Document Title: Beach Management Plan Site Report 2007
Reference: BMP63 - Annex
Status: Final
Date: January 2008
Project Name: Strategic Regional Coastal Monitoring
Management Units: Unit 5A & 5B : Tankerton and Swalecliffe

Author: D. Hallam
Checked By: A. Jeffery
Approved By: C. Longmire

<table>
<thead>
<tr>
<th>Issue</th>
<th>Revision</th>
<th>Description</th>
<th>Authorised</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Initial Issue</td>
<td>C. Longmire</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Final issue</td>
<td>C. Longmire</td>
</tr>
</tbody>
</table>
Beach Management Plan Site Report 2007
Unit 5A & 5B : Tankerton & Swalecliffe

Contents

Annex A: Explanatory Notes... 1
Annex B: Digital Ground Models ... 4
Annex C: Recycling Logs ... 13
Annex D: Herne Bay Wave Recorder ... 16
Annex A

Explanatory Notes
1. **Summary of method of conducting topographic and hydrographic surveys (based on the Environment Agency's National Specification Sections XII and XIII)**

Topographic cross-shore (profile) measurements are made at the intercept of the beach and a hard structure, at all changes of beach slope, at changes in surface sediment and at maximum defined intervals (every 5 metres). Each measurement is feature-coded with the type of surface material. Profiles are 100-500m apart, depending on management status. The seaward limit to be achieved is Mean Low Water Springs or 50 metres from the beach toe.

Topographic spot height (baseline) surveys are carried out annually at Beach Management Plan sites. Profiles are measured at 50m intervals, with the addition of spot heights at the toe of hard structures, the beach surface surrounding structures, all beach ridge crests, all other changes in slope and sediment changes, plus contour lines at a maximum spacing of 5m. All measurements are feature-coded with sediment type. Sufficient data points must be measured to generate a reliable Digital Terrain Model.

Hydrographic surveys are conducted with a single beam echo-sounder, with the position fixing requirement relaxed to DGPS. Soundings are taken along cross-shore profile lines 50m apart and extend 1km offshore. A minimum of 4 shore parallel tie lines are required (including one near the landward and seaward boundaries). The landward limit varies slightly across the region, due to the variation in tidal range, but in general is landward of Mean Sea Level, thus providing overlap with the topographic surveys. Tidal control may be by RTK GPS or by correction from tide gauges which are tied to the survey control network.

2. **Change in Cross-sectional Area (CSA)**

The annual change in cross-sectional area is calculated as the difference in CSA between two surveys, expressed as a percentage change compared to the earlier CSA.

\[
\frac{CSA_1 - CSA_2}{CSA_2} \times 100
\]

Eqn (1)

where \(CSA_1\) = most recent springtime survey and \(CSA_2\) = spring survey previous year. Therefore an annual change of –14% represents erosion during the last year of 14% of the area of last year’s survey.

3. **Method of derivation of Digital Ground and difference models**

The Digital Ground Model is created by interpolating the points of a topographic baseline survey collected by using RTK GPS system. The interpolation method used to create the SECG DGMs is specified as Triangulation with smoothing and is applied in MapInfo Vertical Mapper to create a 1 metre resolution grid.

Triangulation is a process of grid generation that is usually applied to data that requires no regional averaging, such as elevation readings. The surface created by triangulation passes through all of the original data points while generating some degree of "overshoot" above local high values and "undershoot" below local low values. Elevation is an example of point values that are best "surfaced" with a technique that predicts some degree of over- and under- estimation. In modeling a topographic surface from
scattered elevation readings, it is not reasonable to assume that data points were collected at the absolute top or bottom of each local rise or depression in the land surface.

Triangulation involves a process whereby all the original data points are connected in space by a network of triangular faces, drawn as equilaterally as possible. This network of triangular faces is referred to as a Triangular Irregular Network (TIN). Points are connected based on the nearest neighbour relationship (the Delaunay criterion) which states that a circumscribed drawn around any triangle will not enclose the vertices of any other triangle.

To visualise the resulting grid, the same colour scheme is applied, thus enabling comparison between grids of different geographic origin. The colour bands cover a elevation range between -4 to +12 metres OD with elevations lying between -2 and + 5 metres OD are shown in 0.5 metres intervals, the remaining elevation bands shown in 1 metre intervals.

All difference models are created by using a grid calculator within the GIS system. For example the difference model of two baseline surveys is created by subtracting the earlier baseline grid from the most recent baseline grid:

\[Grid_1 - Grid_2 \]
\[Eqn \ (2) \]

where Grid1 = most recent baseline grid and Grid2 = previous baseline grid. Therefore an annual change of -14m² represents erosion during the last year of 14m², whilst positive values represent accretion over the period.
Annex B

Digital Ground Models
Annex C

Recycling Logs

July 2006 – June 2007
RECYCLING LOG – Extraction Site

DATE: 5th – 9th March 2007
LOGGED BY: N. Jordan
WORKS CODE: PR6000

NOTES: Coastal maintenance works

FRONTAGE DESCRIPTION BEFORE MATERIAL EXTRACTION: Large shingle spit at Long Rock extending into Swalecliffe Brook

FRONTAGE DESCRIPTION AFTER MATERIAL EXTRACTION: Swalecliffe Brook cleared and mouth widened. Shingle spit reduced by 50m eastwards

MATERIAL EXTRACTED BETWEEN
QUANTITY OF MATERIAL
MATERIAL DESCRIPTION
Average cross-sectional area removed (m²)

<table>
<thead>
<tr>
<th>Profile/ Groyne Number*</th>
<th>and: Profile/ Groyne Number*</th>
<th>Distance (m, alongshore)</th>
<th>Lorry capacity (m³)</th>
<th>Number of lorry loads</th>
<th>e.g. Shingle/Sand/Mixed</th>
<th>Based on lorry loads</th>
<th>Based on In/Out survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>East of G24/3</td>
<td></td>
<td>5.5</td>
<td>210</td>
<td>shingle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Areas can be defined using ABMS Profile numbers (see map), groyne numbers, descriptions and/or drawn on map.
FRONTAGE DESCRIPTION BEFORE MATERIAL PLACEMENT: Seawall exposed with approximately 3m berm. Cliffing evident in several bays

FRONTAGE DESCRIPTION AFTER MATERIAL PLACEMENT: Berm extended to approximately 6m and beached regraded to approx 1:7 slope

<table>
<thead>
<tr>
<th>Profile/Number*</th>
<th>and: Profile/Number*</th>
<th>Distance (m, alongshore)</th>
<th>Lorry capacity (m³)</th>
<th>Number of lorry loads</th>
<th>e.g. Shingle/Sand/Mixed</th>
<th>Average cross-sectional area deposited (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G22/7</td>
<td>G22/10</td>
<td>5.5</td>
<td></td>
<td>120</td>
<td>shingle</td>
<td></td>
</tr>
<tr>
<td>G22/10</td>
<td>G22/21</td>
<td>5.5</td>
<td></td>
<td>15</td>
<td>shingle</td>
<td></td>
</tr>
<tr>
<td>G22/21</td>
<td>G24/1</td>
<td>5.5</td>
<td></td>
<td>75</td>
<td>shingle</td>
<td></td>
</tr>
</tbody>
</table>

* Areas can be defined using ABMS Profile numbers (see map), groyne numbers, descriptions and/or drawn on map

NOTES: Coastal Maintenance

Material deposited along frontage G22/7 to G22/22
Annex D

Herne Bay Wave Recorder

July 2006 – June 2007
Herne Bay Wave Recorder - July 2006 to June 2007

Location
OS: 616870E 169390N
WGS84: Latitude: 51° 22' 55.5"N Longitude: 01° 06' 54.66"E

Water Depth
~0.5m CD

Instrument Type
Etrometa Step Gauge

Data Quality

<table>
<thead>
<tr>
<th>C1(%)</th>
<th>Sample interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>20 minutes</td>
</tr>
</tbody>
</table>

Storm analysis

A storm is defined using the Peaks-over-Threshold method (Figure F1). Each storm is then examined in detail, and covers the period 16 hours either side of the storm peak, so as to include both the build-up and decay of the storm. This is the procedure recommended by the CIRIA Beach Management Manual since it covers the build-up and decay typical of a mid-latitudes depression.

The choice of the threshold value aims to identify 3 or 4 storms in an average year. The threshold used for Herne Bay is 1.6m.

Figure F2 shows the monthly time series of H_s, with the threshold shown in red. The occurrence of storm waves in the current reporting period is also compared with similar storm waves in previous years in Figure F3.

In such shallow water, there is a tidal signature in H_s and, therefore, the wave heights are expected to decrease as the water depth decreases; this effect is magnified during spring tides and is clearly visible in Figure F2.

Summary

A much quieter year than the previous reporting year; there were no storms exceeding the threshold, although waves of H_s of 1.58m were recorded at the start of November 2006 and in the middle of March 2007.

Acknowledgements

Tidal predictions were produced using the TASK2000 software, kindly provided by Proudman Oceanographic Laboratory.
Figure F2 Monthly time series of H_s at Herne Bay. Storm threshold, shown in red, is 1.6m
Figure F3 Incidence of storms during (a) reporting period and (b) since deployment.