Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007 – Isle of Wight

1. Introduction
Analysis presented in this interim report provides an overview of beach changes and wave and tidal measurements since the commencement of the Southeast Strategic Regional Coastal Monitoring Programme.

The first beach surveys took place during the winter of 2002 and changes are reported until October 2007. This provides a short time base over which beach changes have been monitored. Detailed interpretation and decision-making is not advisable on the basis of these short-term changes, since they may not be representative of longer-term trends. Comment is limited, therefore, to only those sites which show obvious (and probably real) short-term problems, or where long-term data are deemed of sufficient quality.

Data are presented at six levels:
- Process cell summary of aggregated change over one year
- Management Unit overview of one year's beach changes
- Management Unit overview of changes since 2003
- Plotted time series of beach profiles
- Trend analysis of beach cross-sectional area

It is recommended that the user should firstly use the Management Unit overview maps to identify areas of interest and then focus down to the individual profile plots and trends. The Management Unit overview provides an at-a-glance summary of changes during the past year. Colour-coded lines highlight areas of maximum change and identify profiles that might need closer examination.

It must be emphasised that this is the third interim report of a series and that changes identified are indicative only of short-term trends. As the programme progresses, more detailed and meaningful reporting will be possible. Accordingly, this report should be considered as a preliminary assessment.

2. Hydrodynamic and meteorological data
a. Waves
Unlike at neighboring sites, Sandown Bay experienced quieter conditions compared with the previous reporting period. Storm events were concentrated in December 2006, with one further storm in March 2007. All the storms were of similar magnitude and character. Direction of storm approach was from the south. A full wave report is given at Annex A.

b. Tides
A full tide report is given at Annex B.

c. Meteorological data
A meteorological station is co-located with the tide gauge on Sandown Pier. Analysis of the meteorological data will commence in 2009.
3. **Survey data – topographic**
In the past year, although the majority of the surveyed coastline has been generally stable or showing slight accretion, there are some isolated pockets of erosion, particularly in Sandown Bay, and on the more south-facing coastline, which are broadly similar to the longer term pattern over 2003/4 to 2007. The full survey report is at Annex F.

4. **Survey data – bathymetric**
Analysis of bathymetric data will commence in 2008.

<table>
<thead>
<tr>
<th>Annex</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex B</td>
<td>Sandown Pier Tide gauge Interim Report 2007</td>
</tr>
<tr>
<td>Annex C</td>
<td>N/A</td>
</tr>
<tr>
<td>Annex D</td>
<td>N/A</td>
</tr>
<tr>
<td>Annex E</td>
<td>High Level Report – field data collection - SCOPAC</td>
</tr>
<tr>
<td>Annex F</td>
<td>Topographic survey report for the Isle of Wight</td>
</tr>
<tr>
<td>Annex G</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Explanatory Notes
Sandown Bay Directional WaveRider Buoy

Location
OS: 461654E 83776N
WGS84: Latitude: 50°39.0240’N Longitude: 01°07.7555’W

Water Depth
10.7m CD

Instrument Type
Datawell Directional WaveRider Buoy Mk III

Data Quality

<table>
<thead>
<tr>
<th>C1(%)</th>
<th>Sample interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Monthly Means

Sandown Bay June 2006 to May 2007

<table>
<thead>
<tr>
<th>Month</th>
<th>H_s (m)</th>
<th>H_{max} (m)</th>
<th>T_p (s)</th>
<th>T_z (s)</th>
<th>Direction</th>
<th>SST (°C)</th>
<th>No. of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>0.305</td>
<td>0.477</td>
<td>4.8</td>
<td>3.3</td>
<td>149</td>
<td>15.1</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>0.302</td>
<td>0.470</td>
<td>4.8</td>
<td>3.3</td>
<td>160</td>
<td>18.5</td>
<td>31</td>
</tr>
<tr>
<td>August</td>
<td>0.331</td>
<td>0.519</td>
<td>4.8</td>
<td>3.4</td>
<td>176</td>
<td>19.2</td>
<td>31</td>
</tr>
<tr>
<td>September</td>
<td>0.460</td>
<td>0.713</td>
<td>6.4</td>
<td>3.5</td>
<td>163</td>
<td>18.7</td>
<td>29</td>
</tr>
<tr>
<td>October</td>
<td>0.711</td>
<td>1.122</td>
<td>5.3</td>
<td>3.7</td>
<td>165</td>
<td>16.9</td>
<td>31</td>
</tr>
<tr>
<td>November</td>
<td>0.280</td>
<td>1.148</td>
<td>5.8</td>
<td>3.9</td>
<td>169</td>
<td>13.6</td>
<td>30</td>
</tr>
<tr>
<td>December</td>
<td>0.811</td>
<td>1.257</td>
<td>6.4</td>
<td>4.0</td>
<td>165</td>
<td>11.0</td>
<td>31</td>
</tr>
<tr>
<td>January</td>
<td>0.701</td>
<td>1.084</td>
<td>6.7</td>
<td>4.0</td>
<td>173</td>
<td>9.6</td>
<td>31</td>
</tr>
<tr>
<td>February</td>
<td>0.679</td>
<td>1.046</td>
<td>7.6</td>
<td>4.0</td>
<td>164</td>
<td>8.4</td>
<td>28</td>
</tr>
<tr>
<td>March</td>
<td>0.487</td>
<td>0.751</td>
<td>7.6</td>
<td>4.0</td>
<td>162</td>
<td>9.1</td>
<td>31</td>
</tr>
<tr>
<td>April</td>
<td>0.333</td>
<td>0.524</td>
<td>5.6</td>
<td>3.6</td>
<td>140</td>
<td>10.8</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>0.508</td>
<td>0.794</td>
<td>5.5</td>
<td>3.6</td>
<td>165</td>
<td>13.3</td>
<td>31</td>
</tr>
</tbody>
</table>

Tables and plots of these values, together with the minimum and maximum values and the standard deviation are available on the website.

Highest storm events in 2006/7

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>H_s</th>
<th>T_p</th>
<th>T_z</th>
<th>Dir.</th>
<th>Water level elevation (OD)</th>
<th>Tidal stage (hours re. HW)</th>
<th>Tidal range (m)</th>
<th>Tidal surge* (m)</th>
<th>Max. surge* (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Dec-2006 00:00</td>
<td>2.75</td>
<td>7.7</td>
<td>5.6</td>
<td>180</td>
<td>-0.65</td>
<td>HW +6</td>
<td>2.0</td>
<td>0.18</td>
<td>0.22</td>
</tr>
<tr>
<td>06-Mar-2007 05:00</td>
<td>2.74</td>
<td>7.7</td>
<td>5.8</td>
<td>172</td>
<td>-0.39</td>
<td>HW +5</td>
<td>3.2</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>03-Dec-2006 07:00</td>
<td>2.73</td>
<td>7.7</td>
<td>5.4</td>
<td>169</td>
<td>1.43</td>
<td>HW -2</td>
<td>3.1</td>
<td>0.60</td>
<td>0.71</td>
</tr>
</tbody>
</table>

* Tidal information is obtained from the nearest recording tide gauge (the WaveRadar Rex on Sandown Pier). The surge shown is the residual at the time of the highest H_s. The maximum tidal surge is the largest positive surge during the storm event.
Distribution plots

The distribution of wave parameters is shown in the accompanying graphs of:
- Wave roses (Direction vs. H_s) for reporting year and all data
- Percentage of occurrence of H_s, T_p, T_z and Direction from June 2006 to May 2007
- Monthly time series of significant wave height (the red line is the storm threshold)
- Incidence of storms during the reporting period and all previous years. Storms are defined using the Peaks-over-Threshold method. The highest H_s of each storm is shown.

Summary

Unlike at neighbouring sites, Sandown experienced quieter conditions compared with the previous reporting period. Storm events were concentrated in December, with one further storm in March. The three storms experienced were of similar magnitude and character. Storm wave approach was from the south.
Direction vs. H_s for June 2006 to May 2007 (this reporting year)

Direction vs. H_s for July 2003 to May 2007 (all data)
Sandown Pier Tide Gauge

Location
OS: 459964E 83835N
WGS84: Latitude: 50° 39.0666’ N Longitude: 01° 9.18960’W

Instrument
Rosemount WaveRadar Rex

Site of Gauge
Seaward end of Sandown Pier, upper level

Benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>OS Co-ordinates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGBM</td>
<td>5.989m OD</td>
<td>Top of NW bolt</td>
</tr>
<tr>
<td>Aux1</td>
<td>E2 pin on lower deck</td>
<td></td>
</tr>
</tbody>
</table>

Datum information
All data are to Ordnance Datum Newlyn. The height of Chart Datum relative to Ordnance Datum at Sandown is -2.44m.

Levelling information
The site was surveyed on 09 May 2006.

Site Characteristics
The Pier is on open coast, with no nearby estuaries. Spring tidal range is ~4m. Some wave damping from the outer pier arm (see photograph) and some reflection from the Pier legs can occur.

Data Quality

<table>
<thead>
<tr>
<th>C1(%)</th>
<th>Sample interval</th>
<th>Missing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>10 minutes</td>
<td>29 – 31 Jul</td>
</tr>
</tbody>
</table>

Residuals
Residuals for the whole year are shown in Figure 1
Statistics

Surge maxima

<table>
<thead>
<tr>
<th>Month</th>
<th>Value (m)</th>
<th>Date/Time</th>
<th>Value (m)</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.66</td>
<td>18-Jan-2007 08:50</td>
<td>-0.60</td>
<td>23-Jan-2007 02:50</td>
</tr>
<tr>
<td>February</td>
<td>0.71</td>
<td>12-Feb-2007 10:20</td>
<td>-0.39</td>
<td>03-Feb-2007 17:50</td>
</tr>
<tr>
<td>March</td>
<td>0.68</td>
<td>06-Mar-2007 05:00</td>
<td>-0.42</td>
<td>06-Mar-2007 13:40</td>
</tr>
<tr>
<td>April</td>
<td>0.17</td>
<td>20-Apr-2007 02:20</td>
<td>-0.37</td>
<td>01-Apr-2007 16:30</td>
</tr>
<tr>
<td>May</td>
<td>0.29</td>
<td>27-May-2007 09:50</td>
<td>-0.28</td>
<td>23-May-2007 14:50</td>
</tr>
<tr>
<td>June</td>
<td>0.39</td>
<td>26-Jun-2007 15:10</td>
<td>-0.20</td>
<td>09-Jun-2007 08:20</td>
</tr>
<tr>
<td>July</td>
<td>0.48</td>
<td>26-Jul-2007 14:40</td>
<td>-0.16</td>
<td>06-Jul-2007 10:50</td>
</tr>
<tr>
<td>August</td>
<td>0.30</td>
<td>15-Aug-2007 05:10</td>
<td>-0.27</td>
<td>26-Aug-2007 02:10</td>
</tr>
<tr>
<td>September</td>
<td>0.31</td>
<td>10-Sep-2007 19:00</td>
<td>-0.25</td>
<td>10-Sep-2007 03:40</td>
</tr>
<tr>
<td>October</td>
<td>0.29</td>
<td>17-Oct-2007 01:40</td>
<td>-0.25</td>
<td>11-Oct-2007 16:20</td>
</tr>
<tr>
<td>November</td>
<td>0.78</td>
<td>09-Nov-2007 05:50</td>
<td>-0.43</td>
<td>07-Nov-2007 02:50</td>
</tr>
<tr>
<td>December</td>
<td>0.57</td>
<td>09-Dec-2007 10:10</td>
<td>-0.38</td>
<td>18-Dec-2007 01:50</td>
</tr>
</tbody>
</table>

Surge minima

<table>
<thead>
<tr>
<th>Month</th>
<th>Value (m)</th>
<th>Date/Time</th>
<th>Value (m)</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.66</td>
<td>18-Jan-2007 08:50</td>
<td>-0.60</td>
<td>23-Jan-2007 02:50</td>
</tr>
<tr>
<td>February</td>
<td>0.71</td>
<td>12-Feb-2007 10:20</td>
<td>-0.39</td>
<td>03-Feb-2007 17:50</td>
</tr>
<tr>
<td>March</td>
<td>0.68</td>
<td>06-Mar-2007 05:00</td>
<td>-0.42</td>
<td>06-Mar-2007 13:40</td>
</tr>
<tr>
<td>April</td>
<td>0.17</td>
<td>20-Apr-2007 02:20</td>
<td>-0.37</td>
<td>01-Apr-2007 16:30</td>
</tr>
<tr>
<td>May</td>
<td>0.29</td>
<td>27-May-2007 09:50</td>
<td>-0.28</td>
<td>23-May-2007 14:50</td>
</tr>
<tr>
<td>June</td>
<td>0.39</td>
<td>26-Jun-2007 15:10</td>
<td>-0.20</td>
<td>09-Jun-2007 08:20</td>
</tr>
<tr>
<td>July</td>
<td>0.48</td>
<td>26-Jul-2007 14:40</td>
<td>-0.16</td>
<td>06-Jul-2007 10:50</td>
</tr>
<tr>
<td>August</td>
<td>0.30</td>
<td>15-Aug-2007 05:10</td>
<td>-0.27</td>
<td>26-Aug-2007 02:10</td>
</tr>
<tr>
<td>September</td>
<td>0.31</td>
<td>10-Sep-2007 19:00</td>
<td>-0.25</td>
<td>10-Sep-2007 03:40</td>
</tr>
<tr>
<td>October</td>
<td>0.29</td>
<td>17-Oct-2007 01:40</td>
<td>-0.25</td>
<td>11-Oct-2007 16:20</td>
</tr>
<tr>
<td>November</td>
<td>0.78</td>
<td>09-Nov-2007 05:50</td>
<td>-0.43</td>
<td>07-Nov-2007 02:50</td>
</tr>
<tr>
<td>December</td>
<td>0.57</td>
<td>09-Dec-2007 10:10</td>
<td>-0.38</td>
<td>18-Dec-2007 01:50</td>
</tr>
</tbody>
</table>

Extreme maxima

<table>
<thead>
<tr>
<th>Month</th>
<th>Elevation (OD)</th>
<th>Date/Time</th>
<th>Elevation (OD)</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>2.37</td>
<td>20-Feb-2007 01:00</td>
<td>-1.79</td>
<td>20-Feb-2007 18:30</td>
</tr>
<tr>
<td>April</td>
<td>2.29</td>
<td>20-Apr-2007 00:50</td>
<td>-1.97</td>
<td>18-Apr-2007 17:00</td>
</tr>
<tr>
<td>May</td>
<td>2.15</td>
<td>16-May-2007 22:50</td>
<td>-1.71</td>
<td>18-May-2007 05:10</td>
</tr>
<tr>
<td>August</td>
<td>2.17</td>
<td>15-Aug-2007 12:50</td>
<td>-1.87</td>
<td>30-Aug-2007 05:30</td>
</tr>
<tr>
<td>September</td>
<td>2.33</td>
<td>29-Sep-2007 12:40</td>
<td>-1.85</td>
<td>28-Sep-2007 04:50</td>
</tr>
<tr>
<td>October</td>
<td>2.26</td>
<td>27-Oct-2007 11:30</td>
<td>-1.84</td>
<td>26-Oct-2007 16:00</td>
</tr>
<tr>
<td>November</td>
<td>2.43</td>
<td>25-Nov-2007 11:20</td>
<td>-1.76</td>
<td>27-Nov-2007 18:00</td>
</tr>
<tr>
<td>December</td>
<td>2.20</td>
<td>24-Dec-2007 23:30</td>
<td>-1.64</td>
<td>25-Dec-2007 17:30</td>
</tr>
</tbody>
</table>

Extreme minima

<table>
<thead>
<tr>
<th>Month</th>
<th>Elevation (OD)</th>
<th>Date/Time</th>
<th>Elevation (OD)</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>2.37</td>
<td>20-Feb-2007 01:00</td>
<td>-1.79</td>
<td>20-Feb-2007 18:30</td>
</tr>
<tr>
<td>April</td>
<td>2.29</td>
<td>20-Apr-2007 00:50</td>
<td>-1.97</td>
<td>18-Apr-2007 17:00</td>
</tr>
<tr>
<td>May</td>
<td>2.15</td>
<td>16-May-2007 22:50</td>
<td>-1.71</td>
<td>18-May-2007 05:10</td>
</tr>
<tr>
<td>August</td>
<td>2.17</td>
<td>15-Aug-2007 12:50</td>
<td>-1.87</td>
<td>30-Aug-2007 05:30</td>
</tr>
<tr>
<td>September</td>
<td>2.33</td>
<td>29-Sep-2007 12:40</td>
<td>-1.85</td>
<td>28-Sep-2007 04:50</td>
</tr>
<tr>
<td>October</td>
<td>2.26</td>
<td>27-Oct-2007 11:30</td>
<td>-1.84</td>
<td>26-Oct-2007 16:00</td>
</tr>
<tr>
<td>November</td>
<td>2.43</td>
<td>25-Nov-2007 11:20</td>
<td>-1.76</td>
<td>27-Nov-2007 18:00</td>
</tr>
<tr>
<td>December</td>
<td>2.20</td>
<td>24-Dec-2007 23:30</td>
<td>-1.64</td>
<td>25-Dec-2007 17:30</td>
</tr>
</tbody>
</table>

Mean Sea Level

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of days</th>
<th>MSL (OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>31</td>
<td>0.326</td>
</tr>
<tr>
<td>February</td>
<td>28</td>
<td>0.384</td>
</tr>
<tr>
<td>March</td>
<td>31</td>
<td>0.261</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
<td>0.163</td>
</tr>
<tr>
<td>May</td>
<td>31</td>
<td>0.298</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
<td>0.352</td>
</tr>
<tr>
<td>July</td>
<td>28</td>
<td>0.343</td>
</tr>
<tr>
<td>August</td>
<td>31</td>
<td>0.299</td>
</tr>
<tr>
<td>September</td>
<td>30</td>
<td>0.285</td>
</tr>
<tr>
<td>October</td>
<td>31</td>
<td>0.300</td>
</tr>
<tr>
<td>November</td>
<td>30</td>
<td>0.301</td>
</tr>
<tr>
<td>December</td>
<td>31</td>
<td>0.305</td>
</tr>
</tbody>
</table>
10 Highest Values in 2007

<table>
<thead>
<tr>
<th>Surge Value (m)</th>
<th>Date/Time</th>
<th>Elevation (OD) (surge component)</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.78</td>
<td>09-Nov-2007 05:50</td>
<td>2.54 (0.50)</td>
<td>18-Mar-2007 22:50</td>
</tr>
<tr>
<td>0.77</td>
<td>09-Nov-2007 06:10</td>
<td>2.43 (0.32)</td>
<td>25-Nov-2007 11:20</td>
</tr>
<tr>
<td>0.71</td>
<td>12-Feb-2007 10:20</td>
<td>2.41 (0.53)</td>
<td>06-Mar-2007 00:20</td>
</tr>
<tr>
<td>0.68</td>
<td>06-Mar-2007 05:00</td>
<td>2.41 (0.49)</td>
<td>07-Mar-2007 01:10</td>
</tr>
<tr>
<td>0.66</td>
<td>18-Jan-2007 08:50</td>
<td>2.37 (0.19)</td>
<td>20-Feb-2007 01:00</td>
</tr>
<tr>
<td>0.62</td>
<td>12-Jan-2007 04:10</td>
<td>2.33 (0.48)</td>
<td>09-Nov-2007 11:00</td>
</tr>
<tr>
<td>0.61</td>
<td>12-Feb-2007 12:10</td>
<td>2.33 (0.17)</td>
<td>29-Sep-2007 12:40</td>
</tr>
<tr>
<td>0.57</td>
<td>09-Dec-2007 10:10</td>
<td>2.29 (0.13)</td>
<td>28-Sep-2007 12:00</td>
</tr>
<tr>
<td>0.55</td>
<td>02-Dec-2007 11:20</td>
<td>2.29 (0.10)</td>
<td>20-Apr-2007 00:50</td>
</tr>
<tr>
<td>0.53</td>
<td>02-Dec-2007 22:10</td>
<td>2.27 (0.17)</td>
<td>19-Feb-2007 12:20</td>
</tr>
</tbody>
</table>

Annual surge maxima and annual extreme maxima

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual surge maxima</th>
<th>Annual extreme maxima</th>
<th>Annual Mean Sea Level (OD)</th>
<th>Recovery rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value (m)</td>
<td>Date</td>
<td>Elevation (OD) (surge component)</td>
<td>Date</td>
</tr>
<tr>
<td>2007</td>
<td>0.782</td>
<td>09-Nov-2007 05:50</td>
<td>2.539</td>
<td>18-Mar-2007 22:50</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 Residuals for 2007
Figure 2 Tidal elevations relative to Ordnance Datum for 2007
Figure 3 Tidal elevations relative to Chart Datum for 2007
<table>
<thead>
<tr>
<th>Subcell</th>
<th>Mgt Unit</th>
<th>Topographic surveys</th>
<th>Bathymetric surveys</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5g CPU1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU1d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU1e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU1f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU2f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU5a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU5b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU5c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU5d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU5e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU6f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU7a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU7b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU7c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU8a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU8b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU10a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU10b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU10c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU10d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5g CPU12f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f DUR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f DUR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f DUR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f SWA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f SWA2 (1, 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f SWA3 (1, 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f SWA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f STU1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f STU2 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f STU3 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f STU4 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB3 (1, 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB5 (3, 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PHB8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB2C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB2D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB3C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f PB3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f CHB13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM5 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM6 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM7 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM8 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM9 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM10 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM11 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM12 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM13 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c LYM14 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c NET1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c NET2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c NET3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c NET4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c NET5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell</td>
<td>Mgt Unit</td>
<td>Profile 1</td>
<td>Baseline/BMP</td>
<td>Profile 2</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>5c</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>RYD13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>SAN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>SAN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>SAN3</td>
<td>30/05/2007</td>
<td>31/02/2007</td>
<td>31/02/2007</td>
</tr>
<tr>
<td>5e</td>
<td>SAN4</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5e</td>
<td>SAN5</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5e</td>
<td>SAN6</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5e</td>
<td>SAN7</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5e</td>
<td>SAN8</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5e</td>
<td>VEN1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW2</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5d</td>
<td>NEW3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW4</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5d</td>
<td>NEW5</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
</tr>
<tr>
<td>5d</td>
<td>NEW6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>UNIT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>UNIT3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>UNIT4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Completed on time
- Surveyed, but data not submitted
- Completed late
- Not required

Notes:
1. Variable baseline survey completion dates due to better tidal conditions
2. Profile sequence delayed to match previous year’s survey
3. Baseline by 0.5m LiDAR
4. Delayed due to bad weather
5. Area dangerous to survey (loose boulders, seaweed strewn)
6. Area difficult to survey - covered by annual LiDAR
1. Introduction

Analysis has been conducted for those sites where a minimum of four surveys have been recorded. Where possible, changes are measured relative to the Mean Low Water Springs level, although this is not possible at many sites for a variety of reasons. Where possible, longer-term records from earlier programmes are also presented in the profile analysis, although historical data were often collected using significantly different survey techniques, specifications and even datums. Continuity of record has been attempted but different procedures may be necessary to integrate these data sets more fully.

A full time series of plotted beach profiles are shown superimposed and relative to a master profile for each profile location. The master profile provides the basis for calculation of beach cross-section area changes. Where possible, identical depth boundaries have been used for all profiles within a Management Unit. However, even where this has not been possible, direct comparisons can be made for the beach cross sectional area at one profile over time, since the master profile is constant for each profile. The trend in cross sectional area is presented as a graph for each profile.

A Foreshore Change Parameter (ranging from +6 to –6) has been derived for each profile. However, even where this has not been possible, direct comparisons can be made for the beach cross-sectional area at one profile over time, since the master profile is constant for each profile (Figure 1). The trend in cross-sectional area (CSA) is presented as a graph for each profile (Figure 2).

Figure 1: Example of Master Profile with CSA calculated from the surveyed GPS profile.
Figure 2: Example of Beach Profile Trend Analysis

1. Beach Cross-Sectional Area (CSA)
2. Replenishment Activities
3. Mathematically Derived Trend line

2. Condition of process sub-cell
The Beach Change Summary maps contain an at-a-glance condition of the whole of the Isle of Wight, with the arrows representing the average accretion, no change or erosion for each Management Unit.

Most erosion over the past year has occurred in small, localised areas. There however appears to be significant erosion in Sandown bay, in particular SAN6.

Over the two year period, a similar trend occurs. The predominant trend in the north is accretion or no change and in the south the major region of erosion is SAN76 and SAN7.

3. Condition of individual Management Units
Changes within each Management Unit are summarised on two maps. The Beach Change map (with blue banners) shows the location of each beach profile, superimposed on an aerial photograph (note that the line has been extended for clarity). Where possible, the annual change in cross-sectional area has been calculated from spring 2006 to spring 2007. Similar analysis has been conducted from spring 2006 to the initial survey (usually 2003), as shown in the maps with green banners.
TOT 3: West Totland to Colwell Chine
Spring 2006 to Spring 2007
The southern section of this management unit shows predominantly accretion, but there
has been notable around Warden Point.
Baseline Spring 2003 to Spring 2007
This section of beach shows highly localised patches of erosion and accretion. There is a
marked section of erosion in the centre of the southern section, whilst in the northern
section, the short term trends are mirrored over the longer timescale.

TOT 4: Colwell Chine to Fort Albert
Spring 2006 to Spring 2007
There has been very little change this year.
Baseline Spring 2003 to Spring 2007
Over the long timescale, this unit is generally stable, with minor erosion only at 5d00082.

NEW 1: Fort Albert to Fort Victoria
This section is generally stable. Only one profile in the south shows a small amount of
erosion
Baseline Spring 2003 to Spring 2007
The majority of this section appears to be stable. Only one profile in the south shows a
small amount of erosion.

NEW 2: Fort Victoria to Norton Spit
Spring 2006 to Spring 2007
The sandy section has shown little change over the past year. The rocky section indicates
considerable accretion in the east and strong erosion in the west although there is only a
small amount of mobile sediment.
Baseline Spring 2003 to Spring 2007
Over the longer timescale, profiles show a similar pattern this year’s results.

NEW 3: Yarmouth Harbour
Spring 2006 to Spring 2007
The analysis shows that the profile is eroding slightly.
Baseline Spring 2003 to Spring 2007
Along the harbour arm the beach is accreting.

NEW 5: The Common to Marine Drive, Bouldnor
Spring 2006 to Spring 2007
This section has been stable or accreting over the past year.
Baseline Spring 2003 to Spring 2007
Over the longer timescale this section of beach has been stable or accreting.

NEW 11: Gurnard Luck
Spring 2006 to Spring 2007
This section of beach has remained stable over the past year.
Baseline Spring 2003 to Spring 2007
The longer timescale analysis shows accretion in east of the unit and erosion in the west.
NEW 12: West Gurnard to Egypt Point
Spring 2006 to Spring 2007
This section of beach has remained predominantly stable over the past year. Only 5d00281 has shown slight erosion.
Baseline Spring 2003 to Spring 2007
Over the longer timescale, the majority of profiles have shown no change or accretion. Only 5d00299 has shown slight erosion.

NEW13: Egypt Point to Cowes Castle
Spring 2006 to Spring 2007
This section is generally stable.
Baseline Spring 2003 to Spring 2007
Since 2003, the unit has predominantly accreted, with the profile running over the rocks showing no change.

NEW 15: Cowes Breakwater to Old Castle Point
Spring 2006 to Spring 2007
Over the past year, this unit has remained stable.
Baseline Spring 2003 to Spring 2007
The long term analysis of this unit shows a general trend of accretion.

RYD 5: Pelhamfield to Puckpool Hill
Spring 2006 to Spring 2007
This section of the beach is stable. All profiles show no change or some accretion.
Baseline Spring 2004 to Spring 2007
This section is remaining stable over the long timescale. Profile 5d00405 is accreting due to the build up of sediment on the offshore sand bar.

RYD 6: Puckpool Hill to Salterns Road, Seaview
Spring 2006 to Spring 2007
There has been little change in this section over the past year.
Baseline Spring 2004 to Spring 2007
The central section of this unit has shown varying amounts of accretion and erosion over the longer timescale. The margins have shown no change.

RYD 7: Salterns Road to Pier Road, Seaview
Spring 2006 to Spring 2007
This unit has eroded in the western section and accreted in the east.
Baseline Spring 2003 to Spring 2007
Since 2003, the profile in the north as showed some erosion, while the profile in the south has shown no change.

RYD 8: Pier Road to Horestone Point
Spring 2006 to Spring 2007
This section has been stable or accreting slightly.
Baseline Spring 2004 to Spring 2007
Over the longer timescale, this section has accreted in the south and eroded in the north.
RYD 9: Horestone Point to St Helens Church
Spring 2006 to Spring 2007
The southern profiles in this management unit are accreting, while the northern profile is eroding.
Baseline Spring 2004 to Spring 2007
A broadly similar pattern is observed over the longer timescale.

RYD 10: The Duver, St Helens
Spring 2006 to Spring 2007
The northern section of this unit has shown no change or accretion, but the entrance to the harbour has shown some erosion.
Baseline Spring 2004 to Spring 2007
The erosion at the harbour mouth is evident in the longer term.

RYD 12: Bembridge Point to Foreland Fields
Spring 2006 to Spring 2007
The area has remained stable over the past year with exception of profiles at either end of the management unit.
Baseline Spring 2004 to Spring 2007
The erosion at the southern end of the unit last year has shown to be a short-term change only as in the longer term there has been notable accretion.

RYD13: Foreland Fields to Culver Cliff
Spring 2006 to Spring 2007
Profile to the east of this management unit is accreting, while the profile in the east is eroding.
Baseline Spring 2004 to Spring 2007
The long term trends mirror the short term trends.

SAN 1: Culver Cliff
Spring 2006 to Spring 2007
This section of beach has shown no change over the past year.
Baseline Spring 2004 to Spring 2007
The profile shows long term accretion.

SAN 2: Culver Cliff to Yaverland
Spring 2006 to Spring 2007
This unit has shown localised accretion and erosion over the past year.
Baseline Spring 2003 to Spring 2007
The long term change shows a similar pattern to the yearly changes with accretion in the north and erosion in the south.

SAN 3: Yaverland
Spring 2006 to Spring 2007
The analysis shows that this section of the beach is stable.
Baseline Spring 2003 to Spring 2007
The analysis shows no change has occurred since 2003
SAN 4: Sandown Zoo to Fort Street
Spring 2005 to Spring 2007
The majority of profiles show accretion. Only profile 5e00093 shows slight erosion.
Baseline Spring 2003 to Spring 2007
All profiles in this management unit show accretion or no change over the longer timescale.

SAN 5: Fort Street to Ferncliffe Road
Spring 2006 to Spring 2007
All of the profiles show no change or accretion over the past year.
Baseline Spring 2003 to Spring 2007
All profiles along this section show accretion or no change over the longer timescale.

SAN 6: Ferncliffe Road to Hope Beach
Spring 2006 to Spring 2007
The unit shows a predominant trend of erosion throughout the section with the exception of profile 5e00153 which has strongly accreted.
Baseline Spring 2003 to Spring 2007
The north of this section shows a long-term accretional trend, and the south shows a predominantly erosional trend. The exception to this is 5e00153 which has strongly accreted in the south, but the majority of the accretion occurred this year.

SAN 7: Hope Beach to Shanklin Chine.
Spring 2006 to Spring 2007
In the north of this section, the profiles have shown accretion over the past year. In the south the profiles are showing no change or slight erosion. Profile 5e00159 shows high accretion this year yet net 0m2 over the long term. This indicates lots of erosion carries on.
Baseline Spring 2003 to Spring 2007
The majority of this unit has been stable or accreting since 2003, with exception to 5e00167 which has eroded.

SAN 8: Shanklin Chime to Horse Ledge successful
Spring 2006 to Spring 2007
All profiles in this section have accreted or shown no change over the past year.
Baseline Spring 2003 to Spring 2007
The longer term pattern is erosion in the south and accretion in the north of the unit.

VEN 2: Monks Bay to Steephill Cove
Spring 2006 to Spring 2007
This unit has a small beach volume and therefore small changes in cross sectional area can give large percentage changes. Although are not clear patterns of erosion and accretion, there does appear to be stronger erosion occurring in the west.
Baseline Spring 2003 to Spring 2007
Over the longer time period, the beach to the east of Ventnor Harbour is showing variable erosion and accretion. To the west of Ventnor Harbour, the beach is eroding at the Harbour arm end but showing no change in the west.
FRE 2: Brooke Chime to Compton Chime
Spring 2006 to Spring 2007
This beach is eroding in the west and showing no change in the east.
Baseline Spring 2003 to Spring 2007
This beach appears to be stable.

FRE 4: Freshwater Bay
Spring 2006 to Spring 2007
Over the past year, both profiles in this bay have shown erosion.
Baseline Spring 2003 to Spring 2007
Over the longer timescale, the erosion at 5e00495 has continued.
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit TOT3 2 of 2 - Beach Change

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- **No Change**
 - Less than 5 %
 - 5 - 15 %
- **Erosion**
 - 16 - 30 %
 - > 30 %
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Erosion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

No Change:
- 5 - 15%
- Less than 5%
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit NEW 2 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 5 - 15%
 - 16 - 30%
 - > 30%

Annual Report 2007

SCOPAC - Isle of Wight
Condition of Management Unit NEW 5 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Erosion:
 - 16 - 30%
 - > 30%

- No Change:
 - 5 - 15%
 - Less than 5%
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **Erosion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

No Change

Condition of Management Unit NEW 11 - Beach Change

Annual Report 2007

Southeast Strategic Regional Coastal Monitoring Programme

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

Accretion
- > 30 %
- 16 - 30 %
- 5 - 15 %
- Less than 5 %
- 5 - 15 %
- 16 - 30 %
- > 30 %

Erosion
- Less than 5 %
- 5 - 15 %
- 16 - 30 %
- > 30 %

Condition of Management Unit NEW 12 - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit NEW 13 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- Erosion
 - Less than 5 %
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

Accretion
- > 30 %
- 16 - 30 %
- 5 - 15 %

Erosion
- Less than 5 %
- 5 - 15 %
- 16 - 30 %
- > 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

Condition of Management Unit RYD 5 (1 of 2) - Beach Change

SCOPAC - Isle of Wight

Annual Report 2007
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 5 (2 of 2) - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%

- **Erosion**
 - 16 - 30%
 - > 30%
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30 %</td>
</tr>
<tr>
<td>Erosion</td>
<td>> 30 %</td>
</tr>
<tr>
<td>No Change</td>
<td>Less than 5 %</td>
</tr>
<tr>
<td>16 - 30 %</td>
<td></td>
</tr>
<tr>
<td>5 - 15 %</td>
<td></td>
</tr>
<tr>
<td>Less than 5 %</td>
<td></td>
</tr>
<tr>
<td>5 - 15 %</td>
<td></td>
</tr>
</tbody>
</table>

Condition of Management Unit RYD 6 - Beach Change

SCOPAC - Isle of Wight

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 7 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Erosion
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Accretion
 - 5 - 15%
 - 16 - 30%
 - > 30%

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 9 (1 of 2) - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

No Change

01 00 2 00 m

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%

- **Erosion**
 - 16 - 30%
 - > 30%

Condition of Management Unit RYD 9 (2 of 2) - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 10 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - Less than 5 %
- No Change
- Erosion
 - 16 - 30 %
 - > 30 %

Annual Report 2007

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30 %
- 16 - 30 %
- 5 - 15 %
- No Change
- Less than 5 %
- 5 - 15 %
- 16 - 30 %
- > 30 %

Condition of Management Unit RYD 12 (1 of 2) - Beach Change

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Condition of Management Unit RYD 12 (2 of 2) - Beach Change

SCOPAC - Isle of Wight

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007
Condition of Management Unit SAN 1 - Beach Change

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
- Erosion
 - 16 - 30%
 - > 30%
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**
 - Less than 5%
 - 5 -15%
 - 16 - 30%

Condition of Management Unit SAN 2 - Beach Change

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Acretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Erosion:
 - 16 - 30%
 - > 30%

No Change:
- 5 - 15%
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit SAN4 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%

- Erosion:
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

SCOPAC - Isle of Wight
Condition of Management Unit SAN5 - Beach Change

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - Less than 5 %

- **Erosion**
 - 16 - 30 %
 - > 30 %
 - 5 - 15 %
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SAN6 (1 of 2) - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30 %
- 16 - 30 %
- 5 - 15 %
- Less than 5 %
- 5 - 15 %
- 16 - 30 %
- > 30 %

Condition of Management Unit SAN6 (1 of 2) - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SAN 6 (2 of 2) - Beach Change

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%

- **Erosion**
 - 16 - 30%
 - > 30%
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- **No Change**
 - Less than 5 %
 - 5 - 15 %
- **Erosion**
 - 16 - 30 %
 - > 30 %

Condition of Management Unit SAN 7 - Beach Change

SCOPAC - Isle of Wight
Condition of Management Unit SAN 8 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %

- **Erosion**
 - Less than 5 %
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit VEN 1 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%

- **Erosion**
 - 16 - 30%
 - > 30%

SCOPAC - Isle of Wight
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- **No Change**
 - Less than 5 %
 - 5 - 15 %
- **Erosion**
 - 16 - 30 %
 - > 30 %

Southeast Strategic Regional Coastal Monitoring Programme
Annual Report 2007
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
- **No Change**
 - Less than 5%
 - 5 - 15%
- **Erosion**
 - 16 - 30%
 - > 30%

Condition of Management Unit VEN 2 (2 of 2) - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight

Southeast Strategic Regional Coastal Monitoring Programme

01 00 2 00 m
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit FRE 4 - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Acretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
- Erosion
 - 16 - 30%
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

Foreshore Change Parameter

(3) 5g00212

Condition of Management Unit FRE 4 - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit TOT 3 (1 of 2) - Beach Change

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

SCOPAC - Isle of Wight
% Change in Cross-sectional Area
(Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- **Erosion**
 - Less than 5 %
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit TOT 4 (1 of 2) - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Accretion

Erosion
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit TOT 4 (2 of 2) - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Accretion

Erosion
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit NEW 1 - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- Acretion
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - Less than 5 %

- No Change
 - 5 - 15 %
 - Less than 5 %

- Erosion
 - 16 - 30 %
 - > 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit NEW 2 - Beach Change

Annex of ...
% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - 5 - 15%
 - > 30%

- **Erosion**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

Condition of Management Unit NEW 5 - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit NEW 11 - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **Erosion**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

Baseline 2003 to Spring 2007
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 16 - 30%
 - > 30%

Condition of Management Unit NOW 12 - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit NEW 13 - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - No Change
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**

Condition of Management Unit NEW 15 - Beach Change

SCOPAC - Isle of Wight

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 5 (1 of 2) - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- Acretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%
- Erosion

01 00 2 00 m

0 100 200 m

Annual Report 2007

Southeast Strategic Regional Coastal Monitoring Programme
% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- No Change

Condition of Management Unit RYD 5 (2 of 2) - Beach Change

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

SCOPAC - Isle of Wight
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Condition of Management Unit RYD 7 - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 8 - Beach Change

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

SCOPAC - Isle of Wight
% Change in Cross-sectional Area
(Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Condition of Management Unit RYD 9 (1 of 2) - Beach Change

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit RYD 9 (2 of 2) - Beach Change

Annual Report 2007

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - Less than 5 %

- **Erosion**
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %
Condition of Management Unit RYD 10 - Beach Change

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%

Accretion
No Change
Erosion
% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- Accretion
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
 - Less than 5 %

- Erosion
 - 5 - 15 %
 - 16 - 30 %
 - > 30 %

Less than 5 %
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
- **No Change**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%
- **Erosion**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%
% Change in Cross-sectional Area
(Baseline 2003 to Spring 2006)

Accretion
- > 30%
- 16 - 30%
- 5 - 15%
No Change
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Erosion

0 100 200 m
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
- **Erosion**
 - 5 - 15%
 - 16 - 30%
 - > 30%
 - Less than 5%
Condition of Management Unit SAN 1 - Beach Change

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 5 - 15%
 - 16 - 30%
 - > 30%

SCOPAC - Isle of Wight
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SAN 2 - Beach Change

Annual Report 2007

01 00 2 00 m

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

Accretion

- > 30 %
- 16 - 30 %
- 5 - 15 %
- Less than 5 %

Erosion

- 5 - 15 %
- 16 - 30 %
- > 30 %

No Change

- Less than 5 %
Condition of Management Unit SAN 3 - Beach Change

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

Accretion
- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%

No Change
- 5 - 15%

Erosion
- 16 - 30%
- > 30%
Aerial view of a coastal area with lines indicating the percentage change in cross-sectional area from baseline 2003 to Spring 2007. The legend shows the following categories:

- **Accretion**:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**:
 - 16 - 30%
 - > 30%

Condition of Management Unit SAN 4 - Beach Change

- **SCOPAC - Isle of Wight**

The areas are classified as follows:

- **5e00089 (13)**: No Change
- **5e00089 (24)**: 5 - 15%
- **5e00089 (5)**: Less than 5%
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SAN 5 - Beach Change

SAN 5

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>% Change</th>
<th>Line Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 30%</td>
<td>Blue</td>
</tr>
<tr>
<td>16 - 30%</td>
<td>Light Blue</td>
</tr>
<tr>
<td>5 - 15%</td>
<td>Light Blue</td>
</tr>
<tr>
<td>Less than 5%</td>
<td>Gray</td>
</tr>
<tr>
<td>5 - 15%</td>
<td>Gray</td>
</tr>
<tr>
<td>16 - 30%</td>
<td>Red</td>
</tr>
<tr>
<td>> 30%</td>
<td>Red</td>
</tr>
</tbody>
</table>

Condition of Management Unit SAN 5 - Beach Change

SCOPAC - Isle of Wight
% Change in Cross-sectional Area
(Baseline 2003 to Spring 2007)

Accretion
- > 30 %
- 16 - 30 %
- 5 - 15 %
No Change
- Less than 5 %
- 5 - 15 %
Erosion
- 16 - 30 %
- > 30 %
% Change in Cross-sectional Area
(Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>% Change</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 30 %</td>
<td>Blue</td>
</tr>
<tr>
<td>16 - 30 %</td>
<td>Cyan</td>
</tr>
<tr>
<td>5 - 15 %</td>
<td>Green</td>
</tr>
</tbody>
</table>

No Change

Less than 5 %

5 - 15 %

16 - 30 %

> 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

01 00 2 00 m

SCOPAC - Isle of Wight

Condition of Management Unit SAN 7 - Beach Change

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

Accretion

> 30 %
16 - 30 %
5 - 15 %
5 - 15 %
16 - 30 %
> 30 %

No Change

Less than 5 %
5 - 15 %

Erosion

16 - 30 %
> 30 %
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit SAN 8 - Beach Change

SCOPAC - Isle of Wight

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

- 5e00178 (12)
- 5e00183 (1)
- 5e00187 (-20)
- 5e00191 (-11)
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

Accretion
- > 30%
- 16 - 30%
- 5 - 15%
No Change
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Erosion
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30 %
 - 16 - 30 %
 - 5 - 15 %
- **No Change**
 - Less than 5 %
 - 5 - 15 %
 - 16 - 30 %
- **Erosion**
 - > 30 %

Note: The map shows the condition of Management Unit VEN 2 (2 of 2) - Beach Change on the Isle of Wight.
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit FRE 4 - Beach Change

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2004 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
- Erosion:
 - 16 - 30%
 - > 30%

SCOPAC - Isle of Wight
Beach Profiles: 5d00101

- Chainage (m)
- Level (m)

Profiles:
- Master Profile
- Design Profile