Southeast Strategic Regional Coastal Monitoring Programme

ANNUAL REPORT
2007

Poole Bay

AR 37
30 June 2007
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007 – Poole Bay

1. Introduction

Analysis presented in this interim report provides an overview of beach changes and wave and tidal measurements since the commencement of the Southeast Strategic Regional Coastal Monitoring Programme.

The first beach surveys took place during 2002/2003 and changes are reported until spring 2007. This provides a short time base over which beach changes have been monitored. Detailed interpretation and decision-making is not advisable on the basis of these short-term changes, since the changes may not be representative of longer-term trends. Comment is limited, therefore, to only those sites which show obvious (and probably real) short-term problems, or where long-term data are deemed to be of sufficient quality.

Data are presented at four levels:

- Process cell summary of aggregated change over one year
- Management Unit overview of one year’s beach changes
- Management Unit overview of changes since 2002/2003
- Plotted time series of beach profiles
- Trend analysis of beach cross-section area

It is recommended that the user should firstly use the Management Unit overview maps to identify areas of interest and then drill down to the individual profile plots and trends. The Management Unit overview provides an at-a-glance summary of changes during the past year. Colour-coded lines highlight areas of maximum change and identify profiles that might need closer examination.

It must be emphasised that this is the fourth interim report of a series and that changes identified are indicative only of short-term trends. As the programme progresses, more detailed and meaningful reporting will be possible. Accordingly, this report should be considered as a preliminary assessment.

2. Hydrodynamic and Meteorological data

a. Waves
This reporting year saw more storms than the previous year, but of a similar magnitude. Storms were concentrated in the period from November to March, which was a similar pattern to those reported by neighbouring buoys. A stormy period in December encompassed two storms with H_s in excess of 3m.

Wave approach remains consistent with previous years with a strong SSW dominance. Tidal surges during these events were small and occurred a few hours either side of LW.

b. Tides
There are no Regional Monitoring Programme tide gauges within Poole Bay.
c. **Meteorological data**
There are no Regional Monitoring Programme meteorological stations within Poole Bay.

3. **Survey data - topographic**

In the cases of Poole, Bournemouth and Swanage, there are regions of shoreline where complete units display similar tendencies of either accretion or erosion. These results are primarily influenced by beach recharge schemes carried out within the last 2 years, particularly influencing the longer term effects. Closer inspection of the profile datasets is required to determine where and when the most significant readjustments or continuing trends are taking place. Other sites within the region appear mostly stable. For most units, baseline surveys used, were done in 2003

Dates of survey are given in Annex E and the detailed topographic survey report is given at Annex F.

Annex B N/A
Annex C N/A
Annex D N/A
Annex E High Level Report – field data collection (SCOPAC)
Annex F Topographic Survey Report for Poole Bay
Annex G
Explanatory Notes
Boscombe Directional WaveRider Buoy

Location
OS: 411413E 90302N
WGS84: Latitude: 50° 42.681'N Longitude: 001° 50.376' W

Water Depth
10.4m CD

Instrument Type
Datawell Directional WaveRider Buoy Mk III

Data Quality

<table>
<thead>
<tr>
<th>C1(%)</th>
<th>Sample interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Monthly Means

<table>
<thead>
<tr>
<th>Month</th>
<th>Hs (m)</th>
<th>Hmax (m)</th>
<th>Tp (s)</th>
<th>Tz (s)</th>
<th>Direction (°)</th>
<th>SST (°C)</th>
<th>No. of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>0.310</td>
<td>0.478</td>
<td>5.0</td>
<td>3.3</td>
<td>172</td>
<td>15.8</td>
<td>30</td>
</tr>
<tr>
<td>July</td>
<td>0.343</td>
<td>0.527</td>
<td>5.1</td>
<td>3.4</td>
<td>179</td>
<td>13.0</td>
<td>31</td>
</tr>
<tr>
<td>August</td>
<td>0.360</td>
<td>0.559</td>
<td>5.0</td>
<td>3.4</td>
<td>184</td>
<td>19.1</td>
<td>27</td>
</tr>
<tr>
<td>September</td>
<td>0.529</td>
<td>0.806</td>
<td>7.8</td>
<td>3.9</td>
<td>181</td>
<td>18.4</td>
<td>29</td>
</tr>
<tr>
<td>October</td>
<td>0.747</td>
<td>1.168</td>
<td>5.7</td>
<td>3.7</td>
<td>176</td>
<td>16.4</td>
<td>31</td>
</tr>
<tr>
<td>November</td>
<td>0.802</td>
<td>1.254</td>
<td>6.7</td>
<td>4.0</td>
<td>180</td>
<td>13.4</td>
<td>30</td>
</tr>
<tr>
<td>December</td>
<td>0.906</td>
<td>1.386</td>
<td>8.3</td>
<td>4.3</td>
<td>181</td>
<td>10.9</td>
<td>31</td>
</tr>
<tr>
<td>January</td>
<td>0.801</td>
<td>1.216</td>
<td>9.6</td>
<td>4.2</td>
<td>185</td>
<td>9.8</td>
<td>31</td>
</tr>
<tr>
<td>February</td>
<td>0.781</td>
<td>1.187</td>
<td>10.2</td>
<td>4.4</td>
<td>180</td>
<td>8.6</td>
<td>28</td>
</tr>
<tr>
<td>March</td>
<td>0.539</td>
<td>0.825</td>
<td>10.0</td>
<td>4.5</td>
<td>179</td>
<td>9.5</td>
<td>30</td>
</tr>
<tr>
<td>April</td>
<td>0.296</td>
<td>0.453</td>
<td>6.9</td>
<td>3.8</td>
<td>167</td>
<td>11.2</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>0.549</td>
<td>0.844</td>
<td>6.1</td>
<td>3.9</td>
<td>176</td>
<td>13.6</td>
<td>31</td>
</tr>
</tbody>
</table>

Tables and plots of these values, together with the minimum and maximum values and the standard deviation are available on the website.

5 Highest storm events in 2006/7

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Hs (m)</th>
<th>Tp (s)</th>
<th>Tz (s)</th>
<th>Dir.</th>
<th>Water level elevation (OD)</th>
<th>Tidal stage (hrs re: HW)</th>
<th>Tidal range (m)</th>
<th>Tidal surge* (m)</th>
<th>Max. surge* (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-Dec-2006</td>
<td>3.14</td>
<td>7.7</td>
<td>5.8</td>
<td>177</td>
<td>-0.09</td>
<td>HW +4</td>
<td>0.6</td>
<td>0.34</td>
<td>0.37</td>
</tr>
<tr>
<td>03-Dec-2006</td>
<td>3.09</td>
<td>7.7</td>
<td>5.5</td>
<td>186</td>
<td>1.34</td>
<td>HW -4</td>
<td>1.1</td>
<td>0.64</td>
<td>0.85</td>
</tr>
<tr>
<td>06-Mar-2007</td>
<td>2.87</td>
<td>7.7</td>
<td>5.6</td>
<td>186</td>
<td>1.07</td>
<td>HW +4</td>
<td>1.0</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>07-Dec-2006</td>
<td>2.60</td>
<td>8.3</td>
<td>5.4</td>
<td>191</td>
<td>0.91</td>
<td>HW +5</td>
<td>1.0</td>
<td>0.55</td>
<td>0.56</td>
</tr>
<tr>
<td>18-Jan-2007</td>
<td>2.53</td>
<td>10</td>
<td>5.1</td>
<td>197</td>
<td>0.88</td>
<td>HW +3</td>
<td>0.9</td>
<td>0.51</td>
<td>0.65</td>
</tr>
</tbody>
</table>

* Tidal information is obtained from the nearest recording tide gauge (the National Network gauge at Bournemouth). The surge shown is the residual at the time of the highest Hs. The maximum tidal surge is the largest positive surge during the storm event.
Distribution plots

The distribution of wave parameters is shown in the accompanying graphs of:

- Wave roses (Direction vs. H_s) from June 2006 to May 2007 and all data
- Percentage of occurrence of H_s, T_p, T_z and Direction from June 2006 to May 2007
- Monthly time series of significant wave height (the red line is the storm threshold)
- Incidence of storms during the reporting period and all previous years. Storms are defined using the Peaks-over-Threshold method. The highest H_s of each storm is shown.

Summary

This reporting year saw more storms than the previous year, but of a similar magnitude. Storms were concentrated in the period from November to March, which was a similar pattern to those reported by neighbouring buoys. A stormy period in December encompassed two storms with H_s in excess of 3m.

Wave approach remains consistent with previous years with a strong SSW dominance. Tidal surges during these events were small and occurred a few hours either side of LW.

Acknowledgements

Tidal data were supplied by the British Oceanographic Data Centre as part of the function of the National Tidal and Sea Level Facility, hosted by the Proudman Oceanographic Laboratory and funded by DEFRA and the Natural Environment Research Council.
Direction vs. H_s for June 2006 to May 2007 (this reporting year)

Direction vs. H_s for July 2003 to May 2007 (all data)
Regional Coastal Monitoring - High Level Reporting - 2007/8 (Year 6)

Field data collection - SCOPAC - Year 6

<table>
<thead>
<tr>
<th>Sub-cell</th>
<th>Mgt Unit</th>
<th>Profile 1</th>
<th>Topographic surveys</th>
<th>Bathymetric surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>5g</td>
<td>CPU5a</td>
<td>30/05/2007</td>
<td>Target Completion</td>
<td>Target Completion</td>
</tr>
<tr>
<td>5g</td>
<td>CPU5b</td>
<td>30/05/2007</td>
<td>Target Completion</td>
<td>Target Completion</td>
</tr>
<tr>
<td>5g</td>
<td>CPU5c</td>
<td>30/05/2007</td>
<td>Target Completion</td>
<td>Target Completion</td>
</tr>
<tr>
<td>5g</td>
<td>CPU5d</td>
<td>30/05/2007</td>
<td>Target Completion</td>
<td>Target Completion</td>
</tr>
<tr>
<td>5g</td>
<td>CPU5e</td>
<td>30/05/2007</td>
<td>Target Completion</td>
<td>Target Completion</td>
</tr>
</tbody>
</table>

- **Target Completion**: 31/12/2007
- **Baseline/BMP**: NFDC
- **Profile 2**: Post-storm
- **Baseline Profiles**: Target Completion

Notes
- **SCOPAC_yr6.xls, Page 1 of 2**
- **Field data - SCOPAC 28/06/2007**
- **Annex E**
| Cell | Mgt Unit | Baseline/BMP | Baseline | Profiles | Topo/bathy
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5c</td>
<td>NE6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>RYD13</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN1</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN2</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN3</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN4</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN5</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN6</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/08/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN7</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>SAN8</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>VEN1</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN2</td>
<td>(3)</td>
<td>30/05/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>VEN3</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>VEN4</td>
<td>(3, 6)</td>
<td>30/05/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>VEN5</td>
<td>(3)</td>
<td>30/05/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>VEN6</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE1</td>
<td>(3, 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE2</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>FRE3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>FRE4</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5e</td>
<td>FRE5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT1</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT2</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT3</td>
<td>(2)</td>
<td>31/12/2007</td>
<td>31/12/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>TOT4</td>
<td>(2)</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW1</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW2</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW3</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW4</td>
<td>30/05/2007</td>
<td>19/02/2007</td>
<td>31/12/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW5</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW6</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD1</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD2</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD5</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD6</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD7</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD8</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD9</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>NFDC</td>
</tr>
<tr>
<td>5d</td>
<td>RYD10</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>23/03/2007</td>
<td>31/12/2007</td>
</tr>
<tr>
<td>5d</td>
<td>RYD11</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>14/06/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD12</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>14/06/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD13</td>
<td>(3)</td>
<td>30/05/2007</td>
<td>14/06/2007</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD14</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>RYD15</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW11</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW12</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW13</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>NEW15</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU1</td>
<td></td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU2</td>
<td>(1, 2)</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td>31/12/2007</td>
</tr>
<tr>
<td>5b</td>
<td>CPU3</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU4</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU5</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>CPU6</td>
<td>(1)</td>
<td>30/05/2007</td>
<td>18/02/2007</td>
<td>31/12/2007</td>
</tr>
<tr>
<td>5b</td>
<td>CPU7</td>
<td>(1)</td>
<td>30/05/2007</td>
<td>18/02/2007</td>
<td>31/12/2007</td>
</tr>
<tr>
<td>5a</td>
<td>CPU8</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>CPU9</td>
<td>30/05/2007</td>
<td>31/12/2007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Completed on time
- Surveyed, but data not submitted
- Completed late
- Not required

Notes:
1. Variable baseline survey completion dates due to better tidal conditions
2. Profile sequence delayed to match previous year’s survey
3. Baseline by 0.5m LiDAR
4. Delayed due to bad weather
5. Area dangerous to survey (loose boulders, seaweed strewn)
6. Area difficult to survey - covered by annual LiDAR
1. **Introduction**
Analysis has been conducted for those sites where a minimum of four surveys have been recorded. Where possible, changes are measured relative to the Mean Low Water Springs level, although this is not possible at many sites for a variety of reasons. Where possible, longer-term records from earlier programmes are also presented in the profile analysis, although historical data were often collected using significantly different survey techniques, specifications and even datums. Continuity of record has been attempted but different procedures may be necessary to integrate these data sets more fully.

A full time series of plotted beach profiles are shown superimposed and relative to a master profile for each profile location. The master profile provides the basis for calculation of beach cross-section area changes. Where possible, identical depth boundaries have been used for all profiles within a Management Unit. However, even where this has not been possible, direct comparisons can be made for the beach cross sectional area at one profile over time, since the master profile is constant for each profile (Figure 1). The trend in cross sectional area is presented as a graph for each profile (Figure 2).

![Example Master Profile with CSA calculated from the surveyed GPS profile](image)

Figure 1: Example Master Profile with CSA calculated from the surveyed GPS profile
A Foreshore Change Parameter (ranging from +6 to –6) has been derived for each profile. Further information about this parameter, together with the method of calculation of change in cross-sectional area can be found in the Explanatory Notes.

2. **Condition of process sub-cell**
The Beach Change Summary maps contain an at-a-glance condition of the whole of Poole Bay, with the arrows representing the average accretion, no change or erosion for each Management Unit.

South of Durlston Head there has been mainly accretion or minimal change over the past year, whereas north of here there has generally been 5% or more loss, with the exception of the unit surveyed inside the harbour, and the recent Bournemouth recharge area. Over the longer-term, the gains experienced due to beach recharges are clearly visible, greater than 30% for the majority of profiles. Between Sandbanks and Durlston Head there is variability along the shoreline, with alternating localised regions of vulnerability to erosion and accretion.
3. Condition of individual Management Units
Changes within each Management Unit are summarised on two maps. The Beach Change map shows the location of each beach profile, superimposed on an aerial photograph (note that the line has been extended for clarity). Where possible, the annual change in cross-sectional area has been calculated from spring 2006 to spring 2007.

PBY3: Warren Hill to Hengistbury Head

Spring 2006 to Spring 2007
All of this unit has shown accretion this year, and is likely to be have been affected by the recharge to the west at Bournemouth earlier this winter.

Baseline 2002 to Spring 2007
The majority of this unit has gained material, primarily due to the recharge in January 2006. The exception is 5f00365, which lost a large section of the main beach area in the winter months of 2003-2005, but the base of the cliff backing the beach has not undergone significant recession.

PBY2: Point House Café to Warren Hill

Spring 2006 to Spring 2007
Most profiles have eroded in cross-sectional area. This is most pronounced in the most westerly profile (5f00386), which indicates the beach within the centre of its small groyne bay has depleted extensively between the two most recent spring surveys, in particular between September 2006 and April 2007, this depletion confirmed by the recent survey in June.

Baseline 2002 to Spring 2007
All profiles show over 30% accretion following the recharge in 2006.

PBY1B: Bournemouth Boundary to Point House Café

Spring 2006 to Spring 2007
This unit has undergone two major recharges recently, the eastern end in January-March 2006, and then continuing west from Boscombe to Alum Chine. The profiles within the most recently replenished region (5f00415 and west) show significant gain, as would be expected, whereas many of the lines in the older recharge area have lost material as the beach stabilises.

Baseline 2003 to Spring 2007
All profiles have gained over 30% in cross-sectional area due to the recharges.

PBY1A: Sandbanks Ferry Slipway to Bournemouth Boundary

Spring 2006 to Spring 2007
Apart from the two profiles next to the eastern unit boundary (probably affected by the recharge at Bournemouth in January this year), all profiles have decreased in cross-sectional area. This is probably due to the beach adjusting following the recharge undertaken in the winter of 2005, between Shore Road and Branksome Dene Chine.

Baseline 2003 to Spring 2007
Most of the area that was recharged shows overall gain (of over 30% between the eastern boundary, to Canford Cliffs). However, to the west, beyond Canford Cliffs and through to Sandbanks there has been notable losses to 5f00522 (within the recharge area), and it’s most adjacent line to the west (5f00525), and also 5f00536 (east of Midway Path).
PHB7: Rockley
Summer 2006 to Summer 2007
The two lines that are traditionally surveyed annually show virtually no change. However, in future, four extra lines 5f00590-5f00593 will be surveyed to monitor potential beach cutback following removal of sea defences at this location. Future surveys will incorporate the cliff behind the location where gabions were taken away.
Baseline 2003 to Summer 2007
Most changes within this period are minimal, the most prominent change being the decrease in cross-sectional areas of three adjacent profiles 5f00586, 5f00587 and 5f00588.

STU4: Shell Bay
Spring 2006 to Spring 2007
5f00619 shows a significant loss of its cross-sectional area as a consequence of the development of a channel-shaped dip in-between the top berm and the dune area. The other two profiles remain stable.
Baseline 2003 to Spring 2006
With the exception mentioned above, the two southerly profiles indicate a prominent increase in beach volume.

STU3: Studland Sandspit
Spring 2006 to Spring 2007
The area showing most stability and accretion is at the northwest end of the beach, closest to Shell Bay. 5f00665 and 5f00670 have decreased most, accounted for by steepening of the upper beach and recession of the beach face between MHW and MLW, whilst the profiles at the southwest of the beach have been cut back from the toe upwards.
Baseline 2003 to Spring 2006
A similar pattern of erosion and accretion is observed over the longer term but with higher losses of sediment.

STU2: The Warren to Studland Sandspit
Spring 2006 to Spring 2007
With the exception of 5f00701 all lines have decreased in cross-sectional area.
Baseline 2003 to Spring 2006
The overall trend is for erosion across the majority of the frontage.

SWA4: Shep’s Hollow to Ballard Point
Spring 2006 to Spring 2007
5f00735 shows slight erosion in contrast the notable gain in cross-sectional area in the lines either side of it since the recharge in December 2005.
Baseline 2003 to Spring 2006
The recharge in 2005 is reflected in overall accretion in the longer term.

SWA3: Outfall Jetty to Shep’s Hollow
Spring 2006 to Spring 2007
Some erosion has occurred at the southern end of the unit, following the recharge.
Baseline 2003 to Spring 2006
As a result of the recharge that took place in November/December 2005, all profiles show a greater than 30% increase.
SWA2: Swanage Pier to Outfall Jetty

Spring 2006 to Spring 2007

This unit has accreted overall during the last year. Four additional profiles have been added to the interim surveys to allow monitoring of the southern part of this unit and SWA1.

Baseline 2003 to Spring 2007

Although the beach was recharged only at the northern end, all profiles indicate net accretion of material.
Beach Change Summary - 2003 to 2007

Southeast Strategic Regional Coastal Monitoring Programme

Displacements over 2003 to Spring 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

5g00212 (3)

Recharged 2005
Recharged 2005/6
Recharged 2006
Recharged 2006/7

km
0 1 2
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit PBY 3 - Beach Change

SCOPAC - Poole Bay

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Erosion:
 - 16 - 30%
 - > 30%

MU boundary

5g00212 (3)

Actual Annual Change in Cross-sectional Area (m²)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PBY 2 - Beach Change

SCOPAC - Poole Bay

Annual Report 2006

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

<table>
<thead>
<tr>
<th>Category</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td>No Change</td>
<td>Less than 5%</td>
</tr>
<tr>
<td>Erosion</td>
<td>5 - 15%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
</tr>
</tbody>
</table>

MU boundary

Actual Annual Change in Cross-sectional Area (m²)

0 100 200 m
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PBY 1b (1 of 5) - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Accretion

Erosion

No Change

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

0 100 200 m
Condition of Management Unit PBY 1b (2 of 5) - Beach Change

Southeast Strategic Regional Coastal Monitoring Programme

SCOPAC - Poole Bay

Annual Report 2007

Recharge Area
2006/2007

Recharger
2005/2006

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

-30
-5
15
30
50

No Change
Erosion
Accretion
Less than 5%
16 - 30%
> 30%

Actual Annual Change in Cross-sectional Area (m²)

Recharged
2005/2006

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

Accretion
- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%

Erosion
- 5 - 15%
- 16 - 30%
- > 30%

<table>
<thead>
<tr>
<th>Actual Annual Change in Cross-sectional Area (m²)</th>
<th>MU boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5g00212 (3)</td>
<td></td>
</tr>
</tbody>
</table>

Conditions of Management Unit PBY 1b (4 of 5) - Beach Change

Annual Report 2007

SCOPAC - Poole Bay
Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit PBY 1b (5 of 5) - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**
 - > 30%

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
</tr>
<tr>
<td>16 - 30%</td>
<td></td>
</tr>
<tr>
<td>5 - 15%</td>
<td></td>
</tr>
<tr>
<td>Less than 5%</td>
<td></td>
</tr>
<tr>
<td>5 - 15%</td>
<td></td>
</tr>
<tr>
<td>16 - 30%</td>
<td></td>
</tr>
<tr>
<td>> 30%</td>
<td></td>
</tr>
</tbody>
</table>

MU boundary

Actual Annual Change in Cross-sectional Area (m²)

- Recharged: Dec 2006-Jan 2007
Southeast Strategic Regional Coastal Monitoring Programme

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

<table>
<thead>
<tr>
<th>Change Type</th>
<th>Actual Annual Change in Cross-sectional Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td>No Change</td>
<td>Less than 5%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
</tr>
</tbody>
</table>

Recharged
December 2005

Condition of Management Unit PBY 1a (1 of 3) - Beach Change

SCOPAC - Poole Bay

Annual Report 2007
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PBY 1a (2 of 3) - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
- Erosion
 - 16 - 30%
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

Accretion:
- > 30%
- 16 - 30%
- 5 - 15%

Erosion:
- 16 - 30%
- > 30%

Recharged January 2006
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PBY 1a (3 of 3) - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
- **Erosion**:
 - 16 - 30%
 - > 30%
- **No Change**

Actual Annual Change in Cross-sectional Area (m²)

- >30%
- 16 - 30%
- 5 - 15%
- Less than 5%

Recharged January 2006

Condition of Management Unit PBY 1a (3 of 3) - Beach Change

SCOPAC - Poole Bay

Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PHB7 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

Annual % Change in Cross-sectional Area (Summer 2006 to Summer 2007)

Accretion
- > 30%
- 16 - 30%
- 5 - 15%
No Change
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Erosion

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

5g00212 (3)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit STU 4 - Beach Change

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
 - No Change

- Erosion:
 - 16 - 30%
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

0 100 200 m

Condition of Management Unit STU 4 - Beach Change

SCOPAC - Poole Bay
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion:
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- Erosion:

No Change:
- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Actual Annual Change in Cross-sectional Area (m^2)

MU boundary

Condition of Management Unit STU 3 (1 of 2) - Beach Change

SCOPAC - Poole Bay
Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**
 - No Change
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

Condition of Management Unit STU 3 (2 of 2) - Beach Change

SCOPAC - Poole Bay
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit STU 2 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- Erosion
 - 5 - 15%
 - 16 - 30%
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

5g00212 (3)
Condition of Management Unit SWA 4 - Beach Change

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%
- Erosion

MU boundary

Recharged Nov-Dec 2005

Actual Annual Change in Cross-sectional Area (m²)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SWA 3 - Beach Change

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%

- No Change
 - Less than 5%
 - 5 - 15%

- Erosion
 - 16 - 30%
 - > 30%

Actual Annual Change in Cross-sectional Area (m²)

MU boundary

Recharged Nov-Dec 2005
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SWA 2 - Beach Change

Annual Report 2007

Annual % Change in Cross-sectional Area (Spring 2006 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- No Change
 - 5 - 15%

- Erosion
 - 16 - 30%
 - > 30%

New interim lines (added 2006)

SCOPAC - Poole Bay
% Change in Cross-sectional Area (Baseline 2002 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 16 - 30%
 - > 30%

No Change

- 5 - 15%
- Less than 5%

MU boundary

5g00212 (3)

Actual Change in Cross-sectional Area (m²)

- Recharged January 2006

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

Condition of Management Unit PBY 3 - Beach Change

SCOPAC - Poole Bay
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PBY 2 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2002 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- No Change

Recharged January 2006

Actual Change in Cross-sectional Area (m²)

MU boundary
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
- **Erosion**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

Actual Change in Cross-sectional Area (m²)

Condition of Management Unit PBY1b (1 of 5) - Beach Change

Recharged Jan-Mar 2006
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 5 - 15%
 - 16 - 30%
 - > 30%

No Change

- Actual Change in Cross-sectional Area (m²)

MU boundary

Actual Change in Cross-sectional Area (m²)
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
- **No Change**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
- **Erosion**
 - > 30%

Actual Change in Cross-sectional Area (m²)

MU boundary
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>Change Type</th>
<th>Range</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
<td>Light Blue</td>
</tr>
<tr>
<td></td>
<td>Less than 5%</td>
<td>Light Blue</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
<td>Blue</td>
</tr>
<tr>
<td>Erosion</td>
<td>> 30%</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Less than 5%</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
<td>Red</td>
</tr>
</tbody>
</table>

Actual Change in Cross-sectional Area (m²)

MU boundary

5g00212 (3)

Recharged December 2005
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%

- **No Change**
 - Less than 5%
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **Erosion**

Actual Change in Cross-sectional Area (m^2)

 MU boundary

Recharged January 2006

Recharged

500512 (3)

500516 (10)

500518 (10)

500525 (-24)

500560 (3)

500505 (34)

500509 (38)

500512 (38)

500516 (24)
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td>No Change</td>
<td>Less than 5%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td>Erosion</td>
<td>> 30%</td>
</tr>
</tbody>
</table>

Actual Change in Cross-sectional Area (m²)

MU boundary

SCOPAC - Poole Bay

Condition of Management Unit PBY 1a (3 of 3) - Beach Change

Recharged January 2006
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit PHB7 - Beach Change

Annual Report 2007

Annual % Change in Cross-sectional Area (Summer 2003 to Summer 2007)

- Acreation:
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change:
 - Less than 5%
 - 5 - 15%
- Erosion:
 - 16 - 30%
 - > 30%

5g00212 (3)

MU boundary

Actual Annual Change in Cross-sectional Area (m²)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit STU 4 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%

- No Change
 - Less than 5%
 - 5 - 15%

- Erosion
 - 16 - 30%
 - > 30%

MU boundary

Actual Change in Cross-sectional Area (m²)

0 100 200 m
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- **Accretion**
 - > 30%
 - 16 - 30%
 - 5 - 15%
 - Less than 5%

- **Erosion**
 - 5 - 15%
 - 16 - 30%
 - > 30%

- **No Change**

MU boundary

Actual Change in Cross-sectional Area (m^2)

Condition of Management Unit STU 3 (1 of 2) - Beach Change

SCOPAC - Poole Bay
% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>Situation</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accretion</td>
<td>> 30%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td>Erosion</td>
<td>Less than 5%</td>
</tr>
<tr>
<td></td>
<td>5 - 15%</td>
</tr>
<tr>
<td></td>
<td>16 - 30%</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
</tr>
</tbody>
</table>

MU boundary

Actual Change in Cross-sectional Area (m²)

0 100 200 m

Condition of Management Unit STU 3 (2 of 2) - Beach Change

SCOPAC - Poole Bay
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit STU 2 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

Accretion

- 16 - 30 %
- 5 - 15 %
- Less than 5 %
- No Change

Erosion

- 16 - 30 %
- 5 - 15 %
- > 30 %

Actural Change in Cross-sectional Area (m^2)

MU boundary

5g00212 (3)

0 100 200 m
Condition of Management Unit SWA 4 - Beach Change

SCOPAC - Poole Bay

Southeast Strategic Regional Coastal Monitoring Programme

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- Accretion
 - > 30%
 - 16 - 30%
 - 5 - 15%
- No Change
 - Less than 5%
 - 5 - 15%
- Erosion
 - 16 - 30%
 - > 30%

MU boundary

Actual Change in Cross-sectional Area (m²)

Recharged Nov-Dec 2005

5g00212 (3)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SWA 3 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

% Change in Cross-sectional Area
(Baseline 2003 to Spring 2007)

<table>
<thead>
<tr>
<th>% Change</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 30%</td>
<td>Blue</td>
</tr>
<tr>
<td>16 - 30%</td>
<td>Green</td>
</tr>
<tr>
<td>5 - 15%</td>
<td>Blue</td>
</tr>
<tr>
<td>Less than 5%</td>
<td>Brown</td>
</tr>
<tr>
<td>5 - 15%</td>
<td>Blue</td>
</tr>
<tr>
<td>16 - 30%</td>
<td>Green</td>
</tr>
<tr>
<td>> 30%</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Recharged Nov-Dec 2005

Actual Change in Cross-sectional Area (m^2)

MU boundary

5g00212 (3)
Southeast Strategic Regional Coastal Monitoring Programme

Condition of Management Unit SWA 2 - Beach Change

SCOPAC - Poole Bay

Annual Report 2007

% Change in Cross-sectional Area (Baseline 2003 to Spring 2007)

- > 30%
- 16 - 30%
- 5 - 15%
- Less than 5%
- 5 - 15%
- 16 - 30%
- > 30%

Accretion

Erosion

No Change

Actual Change in Cross-sectional Area (m²)

Recharged Nov-Dec 2005

MU boundary

0 100 200 m
Cross Sectional Area above MP Trend for Location: 500362 [B2] and Reference Profile Set

Area Above MP Trend: Accreting at 5.228 m²/Year
Cross Sectional Area above MP Trend for Location: 5100368 [BM76] and Reference Profile Set

Area Above MP Trend: Accreting at 3.546 m²/Year

Survey Date

Beach Area (m²)
60 70 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 180 190 200 205
Cross Sectional Area above MP Trend for Location: 5100369C [BM79] and Reference Profile Set

Area Above MP Trend: Accreting at 0.847 m²/Year

Survey Date:

- 24/08/2002
- 22/02/2003
- 23/08/2003
- 21/02/2004
- 21/08/2004
- 19/02/2005
- 20/08/2005
- 21/02/2006
- 19/08/2006
- 17/02/2007

Legend:
- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5f00370 [B4] and Reference Profile Set

Area Above MP Trend: Accreting at 0.076 m²/Year

Survey Date

Beach Area (m²)
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 205
Cross Sectional Area above MP Trend for Location: 5100373 [BM72] and Reference Profile Set

Area Above MP Trend: Accreting at 4.203 m²/Year
Cross Sectional Area above MP Trend for Location: 5100383 [BM64] and Reference Profile Set

Area Above MP Trend: Accreting at 16.419 m²/Year
Cross Sectional Area above MP Trend for Location: 500384 [B7] and Reference Profile Set

Area Above MP Trend: Accreting at 15.500 m²/Year
Cross Sectional Area above MP Trend for Location: 5100386 [BM62] and Reference Profile Set

Area Above MP Trend: Accreting at 19.602 m²/Year
Cross Sectional Area above MP Trend for Location: 5100389 [BM60] and Reference Profile Set

Area Above MP Trend: Accreting at 37.323 m²/Year

Survey Date

Beach Area (m²)
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215

- Recycling Event
- Area Above MP
- Area Trend
- Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100392 [BM58] and Reference Profile Set

Area Above MP Trend: Accreting at 27.674 m²/Year

Survey Date

Beach Area (m²)

15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215
Cross Sectional Area above MP Trend for Location: 500394 [A3] and Reference Profile Set

Area Above MP Trend: Accreting at 45.132 m²/Year

Survey Date

Beach Area (m²)

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215

☑️ Recycling Event
☑️ Area Above MP
☑️ Area Trend
☑️ Area Between MP & DP

SANDS
Cross Sectional Area above MP Trend for Location: 5f00397 [A4] and Reference Profile Set

Area Above MP Trend: Accreting at 28.683 m²/Year
Cross Sectional Area above MP Trend for Location: 5600400 [A5] and Reference Profile Set

Area Above MP Trend: Accreting at 33.448 m²/Year
Cross Sectional Area above MP Trend for Location: 5f00402 [BM51] and Reference Profile Set

Area Above MP Trend: Accreting at 28.796 m²/Year

Survey Date

Recycling Event
Area Above MP
Area Trend
Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5f00404 [A6] and Reference Profile Set

Area Above MP Trend: Accreting at 32.065 m²/Year

Survey Date

Recycling Event Area Above MP Area Trend Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100405 [BM49] and Reference Profile Set

Area Above MP Trend: Accreting at 35.854 m²/Year
Cross Sectional Area above MP Trend for Location: 5f00407 [A7] and Reference Profile Set

Area Above MP Trend: Accreting at 34.321 m²/Year

Survey Date

Beach Area (m²)

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215
Cross sectional area above MP trend for Location: 5100409 [BM46] and Reference Profile Set

Area Above MP Trend: Accreting at 29.996 m²/Year

Survey Date

Beach Area (m²)

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215
Cross Sectional Area above MP Trend for Location: 5f00410 [A8] and Reference Profile Set

Area Above MP Trend: Accreting at 32.755 m²/Year

Survey Date:
- 23/08/2003
- 21/02/2004
- 19/02/2005
- 20/02/2006
- 18/02/2006
- 19/08/2006
- 17/02/2007

Legend:
- Yellow: Recycling Event
- Green: Area Above MP
- Green Trend: Area Trend
- Blue: Area Between MP & DP

(SANDS)
Cross Sectional Area above MP Trend for Location: 5100412 [BM44] and Reference Profile Set

Area Above MP Trend: Accreting at 20.565 m²/Year
Cross Sectional Area above MP Trend for Location: 500417 [A10] and Reference Profile Set

Area Above MP Trend: Accreting at 16.482 m²/Year

Survey Date

Recycling Event
Area Above MP
Area Trend
Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5f00418 [BM40] and Reference Profile Set

Area Above MP Trend: Accreting at 12.025 m²/Year

Survey Date

Beach Area (m²)

15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215

Clicking on a point will plot a depth measurement.
Cross Sectional Area above MP Trend for Location: 5400420 [A11] and Reference Profile Set

Area Above MP Trend: Accreting at 15.653 m²/Year

Survey Date

Recycling Event
Area Above MP
Area Trend
Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5f00422 [BM37] and Reference Profile Set

Area Above MP Trend: Accreting at 11.661 m²/Year

Survey Date:
- 23/08/2003
- 21/02/2004
- 21/06/2004
- 19/02/2005
- 20/02/2005
- 18/02/2006
- 19/02/2006
- 19/06/2006
- 17/02/2007

Graph parameters:
- Yellow: Recycling Event
- Green: Area Above MP
- Light Green: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500427 [A13] and Reference Profile Set

Area Above MP Trend: Accreting at 16.790 m²/Year
Cross Sectional Area above MP Trend for Location: 5100436 [BM27] and Reference Profile Set

Area Above MP Trend: Accreting at 21.989 m²/Year

Survey Date

BEACH AREA (m²)

15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215

Chart Key:
- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5000441 [A17] and Reference Profile Set

Area Above MP Trend: Accreting at 28.064 m²/Year
Cross Sectional Area above MP Trend for Location: 5f00453 [A20A] and Reference Profile Set

Area Above MP Trend: Accreting at 11.827 m²/Year

Survey Date

Recycling Event Area Above MP Area Trend Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5f00456 [A20B] and Reference Profile Set

Area Above MP Trend: Accreting at 9.522 m²/Year

Survey Date

Beach Area (m²)

- Recycling Event
- Area Above MP
- Area Trend
- Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500458 [A21] and Reference Profile Set

Area Above MP Trend: Accrting at 12.755 m²/Year
Cross Sectional Area above MP Trend for Location: 5400461 [A22] and Reference Profile Set

Area Above MP Trend: Accreting at 18.699 m²/Year

Survey Date

Recycling Event

Area Above MP

Area Trend

Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500464 [A23] and Reference Profile Set

Area Above MP Trend: Accreting at 18.374 m²/Year

Survey Date

Beach Area (m²)

215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15

- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP

SANDS
Cross Sectional Area above MP Trend for Location: 5100467 [A24] and Reference Profile Set

Area Above MP Trend: Accreting at 25.205 m²/Year
Cross Sectional Area above MP Trend for Location: 5100473 [A26] and Reference Profile Set

Area Above MP Trend: Accreting at 26.897 m²/Year

Survey Date

Beach Area (m²)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 215

Legend:
- Yellow: Recycling Event
- Green: Area Above MP
- Green Line: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5000475 [BM1] and Reference Profile Set

Area Above MP Trend: Accreting at 28.290 m²/Year
Cross Sectional Area above MP Trend for Location: 5000478 [PBCBK] and Reference Profile Set

Area Above MP Trend: Accreting at 24.556 m²/Year

Survey Date Range: 24/08/2002 to 17/02/2007

- Yellow: Recycling Event
- Green: Area Above MP
- Green Trend: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5400486 [PBCBC] and Reference Profile Set

Area Above MP Trend: Accreting at 27.498 m²/Year

Survey Date:

Beach Area (m²):
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 195

Legend:
- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP

(SANDS)
Cross Sectional Area above MP Trend for Location: 5I00496 [PBCAS] and Reference Profile Set

Area Above MP Trend: Accreting at 25.850 m²/Year
Cross Sectional Area above MP Trend for Location: 5100505 [PBCAJ] and Reference Profile Set

Area Above MP Trend: Accreting at 29.989 m²/Year
Cross Sectional Area above MP Trend for Location: 5100509 [PBCAF] and Reference Profile Set

Area Above MP Trend: Accreting at 31.582 m²/Year

Survey Date

Beach Area (m²)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 195
Cross Sectional Area above MP Trend for Location: 5000512 [PBCAC] and Reference Profile Set

Area Above MP Trend: Accreting at 27.707 m²/Year
Cross Sectional Area above MP Trend for Location: 500516 [PBCY] and Reference Profile Set

Area Above MP Trend: Accreting at 20.176 m²/Year

Survey Date

Beach Area (m²)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 195
Cross Sectional Area above MP Trend for Location: 5000520 [PBCU] and Reference Profile Set

Area Above MP Trend: Accreting at 16.565 m²/Year
Cross Sectional Area above MP Trend for Location: 5i00525 [PBCP] and Reference Profile Set

Area Above MP Trend: Accreting at 3.279 m²/Year

Survey Date

Area Above MP
Area Trend
Recycling Event
Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500528 [PBCM] and Reference Profile Set

Area Above MP Trend: Accreting at 8.124 m²/Year
Cross Sectional Area above MP Trend for Location: 5100533 [PBCH] and Reference Profile Set

Area Above MP Trend: Accreting at 9.520 m²/Year

Survey Date

Beach Area (m²)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195

- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100536 [PBCE] and Reference Profile Set

Area Above MP Trend: Accreting at 3.969 m²/Year

Survey Date

Beach Area (m²)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 195

Recycling Event Area Above MP Area Trend Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5000584 [RS20] and Reference Profile Set

Area Above MP Trend: Eroding at -0.266 m²/Year

Survey Date:
- 23/08/2003
- 21/02/2004
- 21/08/2004
- 19/02/2005
- 19/08/2005
- 18/02/2006
- 19/08/2006
- 17/02/2007

Beach Area (m²):
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
- 22
- 24
- 26
- 28
- 30
- 32
- 34
- 36
- 38
- 40
- 42
- 44
- 46
- 48
- 50
- 52
- 54
- 56
- 58
- 60
Cross Sectional Area above MP Trend for Location: 5100619 [SHB3] and Reference Profile Set

Area Above MP Trend: Accreting at 0.244 m²/Year

Survey Date vs. Beach Area (m²)

- Yellow: Recycling Event
- Green: Area Above MP
- Green Dash: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100623 [SHB7] and Reference Profile Set

Area Above MP Trend: Accreting at 4.788 m²/Year
Cross Sectional Area above MP Trend for Location: 5100633 [STB1] and Reference Profile Set

Area Above MP Trend: Eroding at -0.528 m²/Year
Cross Sectional Area above MP Trend for Location: 5100640 [STBB] and Reference Profile Set

Area Above MP Trend: Accreting at 0.739 m²/Year
Cross Sectional Area above MP Trend for Location: 5100650 [STB18] and Reference Profile Set

Area Above MP Trend: Accreting at 6.223 m²/Year
Area Above MP Trend: Accreting at 4.498 m²/Year
Cross Sectional Area above MP Trend for Location: 5100660 [STB28] and Reference Profile Set

Area Above MP Trend: Accreting at 3.148 m²/Year

Survey Date

Beach Area (m²)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330

Recycling Event Area Above MP Area Trend Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100665 [STB33] and Reference Profile Set

Area Above MP Trend: Accreting at 2.283 m²/Year

Survey Date

Beach Area (m²)

Recycling Event Area Above MP Area Trend Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5400670 [STB38] and Reference Profile Set

Area Above MP Trend: Eroding at -1.281 m²/Year

Survey Date

Beach Area (m²)

- Recycling Event
- Area Above MP
- Area Trend
- Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5000675 [STB43] and Reference Profile Set

Area Above MP Trend: Accreting at 5.556 m²/Year
Cross Sectional Area above MP Trend for Location: 500679 [STB47] and Reference Profile Set

Area Above MP Trend: Accreting at 0.673 m²/Year

Survey Date

Beach Area (m²)
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
Cross Sectional Area above MP Trend for Location: 5100682 [STB50] and Reference Profile Set

Area Above MP Trend: Accreting at 2.850 m²/Year

Survey Date:
- 22/02/2003
- 23/08/2003
- 21/02/2004
- 21/08/2004
- 19/02/2005
- 20/08/2005
- 18/02/2006
- 19/08/2006
- 17/02/2007

Area Trend

Beach Area (m²): 0 to 330
Cross Sectional Area above MP Trend for Location: 5100686 [STB54] and Reference Profile Set

Area Above MP Trend: Accreting at 1.996 m²/Year

Survey Date

Beach Area (m²)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
Cross Sectional Area above MP Trend for Location: 5100690 [STB58] and Reference Profile Set

Area Above MP Trend: Eroding at -1.917 m²/Year

Survey Date

Beach Area (m²)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
Cross Sectional Area above MP Trend for Location: 5100694 [STB62] and Reference Profile Set

Area Above MP Trend: Eroding at -4.630 m²/Year

Survey Date

Beach Area (m²)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
Cross Sectional Area above MP Trend for Location: 5100698 [STB66] and Reference Profile Set

Area Above MP Trend: Accreting at 1.320 m²/Year

Survey Date

Beach Area (m²)

Recycling Event
Area Above MP
Area Trend
Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 5100701 [WW3] and Reference Profile Set

Area Above MP Trend: Eroding at -0.822 m²/Year

Survey Date

Beach Area (m²)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
Cross Sectional Area above MP Trend for Location: 5100705 [WW7] and Reference Profile Set

Area Above MP Trend: Eroding at -0.350 m²/Year
Cross Sectional Area above MP Trend for Location: 5100710 [WW12] and Reference Profile Set

Area Above MP Trend: Eroding at -0.798 m²/Year
Cross Sectional Area above MP Trend for Location: 500735 [S33] and Reference Profile Set

Area Above MP Trend: Accreting at 1.265 m²/Year

Survey Date

Beach Area (m²)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

SANDS
Cross Sectional Area above MP Trend for Location: 5000741 [S27] and Reference Profile Set

Area Above MP Trend: Accreting at 7.114 m²/Year

Survey Date

Beach Area (m²)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

- Recycling Event
- Area Above MP
- Area Trend
- Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500744 [S24] and Reference Profile Set

Area Above MP Trend: Accreting at 13.146 m²/Year
Cross Sectional Area above MP Trend for Location: 500747 [S21] and Reference Profile Set

Area Above MP Trend: Accreting at 14.185 m²/Year
Cross Sectional Area above MP Trend for Location: 500750 [S18] and Reference Profile Set

Area Above MP Trend: Accreting at 14.341 m²/Year

Survey Date vs. Beach Area (m²)

- Yellow: Recycling Event
- Green: Area Above MP
- Green: Area Trend
- Blue: Area Between MP & DP
Cross Sectional Area above MP Trend for Location: 500756 [S12] and Reference Profile Set

Area Above MP Trend: Accreting at 11.582 m²/Year
Cross Sectional Area above MP Trend for Location: 5100761 [S07] and Reference Profile Set

Area Above MP Trend: Accreting at 5.864 m²/Year

Survey Date

Beach Area (m²)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Cross Sectional Area above MP Trend for Location: 5400763 [SO5] and Reference Profile Set

Area Above MP Trend: Accreting at 2.002 m²/Year
Cross Sectional Area above MP Trend for Location: 5000767 [S01] and Reference Profile Set

Area Above MP Trend: Accreting at 1.718 m²/Year

Survey Date
-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Beach Area (m²)