Document Title: Beach Management Plan Site Report 2010
Reference: BMP112 - Annex
Status: Final
Date: May 2011
Project Name: Strategic Regional Coastal Monitoring
Management Units: 4cMU25 - Bulverhythe

Author: C. Milburn
Checked By: J. Clarke
Approved By: J. Clarke

<table>
<thead>
<tr>
<th>Issue</th>
<th>Revision</th>
<th>Description</th>
<th>Authorised</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>Draft Report for Consultation</td>
<td>J. Clarke</td>
</tr>
<tr>
<td>02</td>
<td>01</td>
<td>Final Report</td>
<td>J. Clarke</td>
</tr>
</tbody>
</table>
Beach Management Plan Site Report 2010
Management Unit (MU) 25: Bulverhythe

Contents

Annex A: Explanatory Notes .. 1
Annex B: Digital Ground Models .. 4
Annex C: Recycling Logs ... 8
Annex D: Pevensey Bay Wave Recorder .. 10
Annex A

Explanatory Notes
1. Summary of method of conducting topographic and hydrographic surveys
(based on the Environment Agency’s National Specification Sections XII and XIII)

Topographic cross-shore (profile) measurements are made at the intercept of the beach
and a hard structure, at all changes of beach slope, at changes in surface sediment and
at maximum defined intervals (every 5 metres). Each measurement is feature-coded
with the type of surface material. Profiles are 100-500m apart, depending on
management status. The seaward limit to be achieved is Mean Low Water Springs or
50 metres from the beach toe.

Topographic spot height (baseline) surveys are carried out annually at Beach
Management Plan sites. Profiles are measured at 50m intervals, with the addition of
spot heights at the toe of hard structures, the beach surface surrounding structures, all
beach ridge crests, all other changes in slope and sediment changes, plus contour lines
at a maximum spacing of 5m. All measurements are feature-coded with sediment type.
Sufficient data points must be measured to generate a reliable Digital Terrain Model.

Hydrographic surveys are conducted with a single beam echo-sounder, with the
position fixing requirement relaxed to DGPS. Soundings are taken along cross-shore
profile lines 50m apart and extend 1km offshore. A minimum of 4 shore parallel tie lines
are required (including one near the landward and seaward boundaries). The landward
limit varies slightly across the region, due to the variation in tidal range, but in general is
landward of Mean Sea Level, thus providing overlap with the topographic surveys.
Tidal control may be by RTK GPS or by correction from tide gauges which are tied to
the survey control network

2. Change in Cross-sectional Area (CSA)

The annual change in cross-sectional area is calculated as the difference in CSA
between two surveys, expressed as a percentage change compared to the earlier CSA.

\[
\frac{CSA_1 - CSA_2}{CSA_2} \times 100
\]

Eqn (1)

where CSA\(_1\) = most recent springtime survey and CSA\(_2\) = spring survey previous year.
Therefore an annual change of –14% represents erosion during the last year of 14% of
the area of last year’s survey.

3. Method of derivation of Digital Ground and difference models

The Digital Ground Model is created by interpolating the points of a topographic
baseline survey collected by using RTK GPS system. The interpolation method used to
create the SECG DGMs is specified as Triangulation with smoothing and is applied in
MapInfo Vertical Mapper to create a 1 metre resolution grid.

Triangulation is a process of grid generation that is usually applied to data that requires
no regional averaging, such as elevation readings. The surface created by triangulation
passes through all of the original data points while generating some degree of
"overshoot" above local high values and "undershoot" below local low values. Elevation
is an example of point values that are best "surfaced" with a technique that predicts
some degree of over- and under- estimation. In modeling a topographic surface from
scattered elevation readings, it is not reasonable to assume that data points were collected at the absolute top or bottom of each local rise or depression in the land surface.

Triangulation involves a process whereby all the original data points are connected in space by a network of triangular faces, drawn as equilaterally as possible. This network of triangular faces is referred to as a Triangular Irregular Network (TIN). Points are connected based on the nearest neighbour relationship (the Delaunay criterion) which states that a circumcircle drawn around any triangle will not enclose the vertices of any other triangle.

To visualise the resulting grid, the same colour scheme is applied, thus enabling comparison between grids of different geographic origin. The colour bands cover a elevation range between -4 to +12 metres OD with elevations lying between -2 and +5 metres OD are shown in 0.5 metres intervals, the remaining elevation bands shown in 1 metre intervals.

All difference models are created by using a grid calculator within the GIS system. For example the difference model of two baseline surveys is created by subtracting the earlier baseline grid from the most recent baseline grid:

\[\text{Grid}_1 - \text{Grid}_2 \]
\text{Eqn (2)}

where \(\text{Grid}_1 \) = most recent baseline grid and \(\text{Grid}_2 \) = previous baseline grid. Therefore an annual change of \(-14 \text{m}^2\) represents erosion during the last year of \(14 \text{m}^2\), whilst positive values represent accretion over the period.
Annex B

Digital Ground Models
Annex C

Recycling Logs
DATE:
Sept 2009

LOGGED BY:
C. Milburn

NOTES:
e.g. Weather, post emergency works, date of storm, scheme maintenance etc.

FRONTAGE DESCRIPTION BEFORE MATERIAL PLACEMENT:
e.g. seawall exposed, berm width = 2m

FRONTAGE DESCRIPTION AFTER MATERIAL PLACEMENT:
e.g. material profiled, crest height, berm width, profile gradient, back tipped etc.

<table>
<thead>
<tr>
<th>MATERIAL PLACED BETWEEN</th>
<th>QUANTITY OF MATERIAL</th>
<th>MATERIAL DESCRIPTION</th>
<th>Average cross-sectional area deposited (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile/Groyne Number*</td>
<td>and: Profile/Groyne Number*</td>
<td>Distance (m, alongshore)</td>
<td>Lorry capacity (m³)</td>
</tr>
<tr>
<td>4c01497</td>
<td>4c01477A</td>
<td>760m</td>
<td></td>
</tr>
</tbody>
</table>

* Areas can be defined using ABMS Profile numbers (see map), groyne numbers, descriptions and/or drawn on map.
Annex D

Pevensey Bay Waverider Buoy

July 2009 – June 2010
Pevensey Bay Waverider Buoy - July 2009 to June 2010

Location
OS: 570429E 100915N
WGS84: Latitude: 50° 46.966' N Longitude: 00° 24.974' E

Water Depth
9.8m CD

Instrument Type
Datawell Directional Waverider Mk III

Data Quality

<table>
<thead>
<tr>
<th>C1 (%)</th>
<th>Sample interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Storm Analysis

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Hs (m)</th>
<th>Tp (s)</th>
<th>Tz (s)</th>
<th>Dir. (°)</th>
<th>Water level elevation (OD)</th>
<th>Tidal stage (hours re. HW)</th>
<th>Tidal range (m)</th>
<th>Tidal surge* (m)</th>
<th>Max. surge* (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Nov-2009 17:30</td>
<td>3.61</td>
<td>9.1</td>
<td>6.2</td>
<td>214</td>
<td>-0.71</td>
<td>HW -4</td>
<td>4.15</td>
<td>0.36</td>
<td>0.63</td>
</tr>
<tr>
<td>23-Nov-2009 16:00</td>
<td>3.49</td>
<td>10.0</td>
<td>6.3</td>
<td>224</td>
<td>2.30</td>
<td>HW +4</td>
<td>5.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31-Mar-2010 10:30</td>
<td>3.33</td>
<td>10.0</td>
<td>6.1</td>
<td>214</td>
<td>2.80</td>
<td>HW -1</td>
<td>5.92</td>
<td>0.16</td>
<td>0.47</td>
</tr>
<tr>
<td>25-Nov-2009 05:00</td>
<td>3.27</td>
<td>9.1</td>
<td>5.7</td>
<td>219</td>
<td>1.64</td>
<td>HW +1</td>
<td>3.07</td>
<td>0.02</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table F1 Storm events during the reporting period, July 2009 to June 2010

A storm is defined using the Peaks-over-Threshold method (Figure F1). Each storm is then examined in detail, and covers the period 16 hours either side of the storm peak, so as to include both the build-up and decay of the storm. This is the procedure recommended by the CIRIA Beach Management Manual since it covers the build-up and decay typical of mid-latitudes depression.

At present, the threshold for an individual site is derived empirically, since the measurements span only 6 years and, therefore, errors on the low side. The threshold used for Pevensey Bay is 3m, but is likely to be increased next year. The aim is to identify 3 or 4 storms in an average year.

Figure F2 shows the monthly time series of H_s, with the threshold shown in red. The occurrence of storm waves in the current reporting period is also compared with similar storm waves in previous years in Figure F3. Subsequent figures show a time series of the wave conditions for each of the storms listed in Table F1, together with the tidal

* Tidal information is obtained from the nearest recording tide gauge (the National Network gauge at Newhaven). The surge shown is the residual at the time of the highest H_s. The maximum tidal surge is the largest positive surge during the storm event.
conditions at the nearest tide gauge. Each graph is centred around the highest H_s of the individual storm.

Summary

This reporting year was characterised by two main periods of storm activity in November 2009 and March 2010, although overall the waves at the peak of the storms were not as high as previous years. The lengthy period of moderate waves in November was evident at many other sites along the Channel coast including Rustington, Bracklesham, Milford and Boscombe.

Acknowledgements

Tidal data were supplied by the British Oceanographic Data Centre as part of the function of the National Tidal and Sea Level Facility, hosted by the Proudman Oceanographic Laboratory and funded by DEFRA and the Natural Environment Research Council.
Figure F2 Monthly time series of H_s at Pevensey Bay. Storm threshold, shown in red, is 3m.
Figure F3 Incidence of storms during (a) reporting period and (b) since deployment.
Annex F BMP Wave Report Pevensey Bay 2009/10

Figure F4 Highest storm of the reporting period

This particular storm was marked by an extended period of waves over 2m, peaking at 3.61m H_s. Followed by a rapid decrease in wave height 4 hours after the peak of the storm. The storm was generated by a particularly deep, complex, slow-moving depression (969 hPa) centred in the North Atlantic (see Figure F5), producing strong, south westerly winds over much of southern Britain.

Unlike the remainder of the storms (which were all from the SW), there was a period of SSW waves during the first half of the storm, only becoming SW some 4 hours after the storm peak. The peak of the storm did not occur at High Water and was accompanied by a relatively small surge of 0.36m.
Figure F5 Surface Pressure chart on 14 November 2009 at 0001Z.
Figure F6 Second highest storm of the reporting period

This storm was more of a lengthy period of moderate to high waves for more than 16 hours prior to the peak of the storm, reaching a maximum H_s of 3.49m. Wave approach was from the SW.
Figure F7 Third highest storm of the reporting period

Unlike the two previous events, the storm peak coincided with High Water, although the storm surge was negligible at ~0.16m.
Figure F7 Fourth highest storm of the reporting period

This storm exceeded the threshold for only a short period peaking at 3.27m H_s. Following the peak of the storm a second increase in wave height occurred some 12 hours after but did not reach the same magnitude.